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An FPGA Accelerator for Genome Variant Calling
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In genome analysis, it is often important to identify variants from a reference genome. However, identify-

ing variants that occur with low frequency can be challenging, as it is computationally intensive to do so

accurately. LoFreq is a widely used program that is adept at identifying low-frequency variants. This arti-

cle presents a design framework for an FPGA-based accelerator for LoFreq. In particular, this accelerator is

targeted at virus analysis, which is particularly challenging, compared to human genome analysis, as the

characteristics of the data to be analyzed are fundamentally different. Across the design space, this accelera-

tor can achieve up to 120× speedups on the core computation of LoFreq and speedups of up to 51.7× across

the entire program.
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1 INTRODUCTION

Genome analysis has become an important computational workload as we work towards person-
alized medicine, better understanding diseases, and other basic scientific inquiry. One important
aspect of genome analysis is variant calling. Variant calling is the process of identifying variants
from a reference genome in genetic data. A typical pipeline consists of the following three stages:
First, genomes are read by a sequencer to collect raw snippets of sequence data (called “reads”). Sec-
ond, the reads are aligned and mapped to a reference genome (called “read mapping”). Finally, dif-
ferences between the reads and reference genome are examined and variants are identified (called
“variant calling”). Note that this is not as trivial as looking for differences, because it involves
distinguishing between sequence read errors, read mapping errors, and true genome variations
(“variants”).

LoFreq is an alignment-based variant caller that can accurately detect very rarely occurring
variants [30, 35]. In particular, LoFreq accurately distinguishes between low-frequency variants
and errors in sequencing or mapping using rigorous statistical modeling. Unfortunately, LoFreq’s
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effectiveness at detecting low-frequency variants comes at a performance cost. LoFreq is slower
than other variant callers. Often, iVar [20] is used instead of LoFreq, as it is faster. However, it is
less sensitive, so it may miss low-frequency variants.

Despite its performance disadvantage, LoFreq’s sensitivity can be invaluable. For example, since
the outbreak of COVID-19, LoFreq has been heavily used to track inter-host variants and the evolu-
tionary dynamics of SARS-CoV-2 [25]. It is therefore important to improve the overall performance
of LoFreq to enable detection of low-frequency variants to further biological progress, understand-
ing, and innovation.

The shape of the genomic dataset influences the available parallelism within the core LoFreq
algorithm. There are three important parameters that characterize a dataset upon which variant
calling is performed. The first is the length of the genome. All of the reads corresponding to a base
(nucleotide) in the reference genome form a column. Each column can be processed independently,
providing one source of parallelism. The second parameter is the depth of each column, which is
the number of bases in that column. Each column may have a different number of bases in it, as
the reads will not be mapped uniformly across the genome. The last parameter is the number of
bases that are different from the reference base within a column. This parameter will also vary
by column. The computational workload within a column is proportional to the product of the
last two parameters. Unfortunately, compared to parallelization across columns, parallelization
within a column is more challenging because of data dependencies that are inherent to the
algorithm.

This article presents an FPGA-based accelerator for the LoFreq variant caller. While the LoFreq
algorithm is the same regardless of the parameters described above, the accelerator design is driven
by the characteristics of virus data, which has relatively short genome lengths but large and vary-
ing depths. This is one important case in which the available parallelism is more difficult to exploit
and is well suited to custom hardware acceleration. The accelerator performs the core probability
calculations of LoFreq to identify variants. The accelerator design consists of several column units.
Each column unit is designed to process a single column of data at a time. The column units make
use of prefetching, pipelining, and parallelization to efficiently identify variants in that column.
LoFreq processes every column independently, so once a column unit completes the computation
for one column, it can begin processing another column. Furthermore, multiple column units can
operate on different columns independently and in parallel.

Each column unit consists of multiple processing elements that operate on different por-
tions of the computation within the column simultaneously. As LoFreq deals with very small
probabilities and is trying to detect variants that occur with low frequency, these processing
elements operate on very small numbers that need high precision. Therefore, all operations use
double precision floating point arithmetic and all computations are done in log-space to avoid
floating point underflow. This means that the key computations within a processing element are
logarithms and exponentials. These computations are expensive in terms of both latency and
resource use. The processing element design is optimized to take into account these long latency
operations.

Using high-level synthesis, this article performs a design space analysis of the accelerator archi-
tecture along multiple dimensions, including parallelism across columns and processing elements,
pipelining within the column units, and storage of intermediate results. This highlights the various
tradeoffs across the design space and shows how different designs behave on different datasets. A
column unit with 32 processing elements can speed up the core computation of LoFreq by up to
120× over the software version. Furthermore, the best overall accelerator design is able to speed
up the entire application by 10.0–51.7× compared to a parallelized software version of LoFreq that
utilizes 16 hardware CPU threads.
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2 GENOMICS ANALYSIS

The first step in a genomics analysis pipeline is sequencing. Short genome fragments are read
using a sequencer. As previously stated, these fragments are known as reads. They can be from
anywhere within the genome and may contain errors due to the nature of sequencing. The error
rate of the sequencer is generally well known.

The next step is to perform read mapping. Read mapping is the process that maps these reads
to a reference genome to determine where the short read came from in the longer DNA sequence.
Note that, again, reads may be incorrectly mapped to the reference genome, as there are both
potential errors in the read from the sequencer and potential mutations from the reference in
the read fragment. Once all of the reads are aligned and mapped to the reference genome, every
position in the reference genome will be covered by many reads. At a given position, genome bases
(nucleotides) from all reads that cover this position form a column of genome bases. As stated in
the previous section, such a column of bases is referred to as a column, and the total number of
bases in a column is known as the depth. The depth of a column is denoted by N .

Within a column, there can exist bases that differ from the corresponding reference base and
the majority of other bases in the column. Such a varying base could either be an error from the
previous stages (sequencing or read mapping) or a true genome variation, a Single Nucleotide

Variant (SNV), that is of significant interest. Therefore, each base in a column is associated with
a quality score that is computed from the sequence quality and the mapping quality of that read.
The probability that the base is erroneous can be computed directly from the quality score.

Variant callers take aligned sequences and their quality scores as input and attempt to iden-
tify variants in the data, distinguishing between SNVs and errors. Variant calling on SARS-CoV-
2 genome data poses a unique challenge. Study of the SARS-CoV-2 genome has much deeper
columns, with depths as high as 1,000,000, compared to that of human genome data, which typically
have depths from 30 to 50. A major challenge is to distinguish SNVs with extremely low frequency
from errors in such large columns. These SNVs are of great significance but difficult to identify,
because sequencing machines and read mappers produce errors at a similarly low frequency.

LoFreq is a variant caller specialized in solving this challenge. LoFreq can accurately distinguish
low-frequency SNVs from sequencing and mapping errors by virtue of its unique and rigorous
statistical modeling. It examines each column in the alignment independently. For each column,
LoFreq models errors in that column using a Poisson-Binomial distribution. If the number of vary-
ing bases is inconsistent with the computed distribution, then SNVs most likely exist.

3 LOFREQ AND ITS COMPUTATION

As previously mentioned, LoFreq is able to identify SNVs even when their frequency of occurrence
is as low as that of sequencing and mapping errors. However, this makes LoFreq much slower than
other variant callers, as it must do more computation to identify low-frequency variants.

As input, LoFreq takes a file of reads that have already been mapped to a reference sequence
along with quality scores, which are a measure of confidence that both the read and the mapping
are correct. Before processing each column, LoFreq initially must perform preprocessing on this
data to do three things. First, the entire column must be extracted from the collection of mapped
reads. This is non-trivial, as it involves scanning a region of the file to find all of the bases that
belong in that column. Second, the error probability for each base must be calculated from its
associated quality score. Finally, the number of observed varying bases from the reference genome
in the column must be counted.

After preparing the column, the core probability calculation uses the depth of column (N ), the
number of observed varying bases in the column (K ), and the error probabilities to decide whether
there are SNVs among the observed varying bases.
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Fig. 1. Probability mass function.

3.1 Core Computation

The core of LoFreq operates on each column independently of all other columns. It models sequenc-
ing and mapping errors of an individual column in a Poisson-Binomial distribution. The intuition
is that if the number of observed varying bases is not consistent with the error distribution, then
chances are high that SNVs exist; otherwise, these varying bases are most likely sequencing or
mapping errors.

In a column, each individual base is modeled as an independent Bernoulli trial. The error prob-
ability of the nth base, pn , indicates the probability that the base is a sequencing or mapping error.
Using this model, the algorithm calculates the p-value to confirm or refute the null hypothesis
that all observed varying bases in the column are errors. A predetermined threshold, t , is used to
determine whether or not the null hypothesis is true. If the calculated p-value is greater than t ,
then the null hypothesis is not wrong and all observed varying bases are most likely errors. If the
calculated p-value is less than or equal to t , then the null hypothesis is likely incorrect; therefore,
there is strong evidence for the existence of SNVs.

Consider the case where K varying bases are observed in a column that has N bases in total.
Prn (X = k ) is the probability of observing exactly k varying bases in the first n bases of this
column. Figure 1 shows the probability mass function (PMF) of PrN (X = k ) with respect to k .
PrN (X = k ) is the probability of observing exactly k varying bases in the entire column. Each bar
in the figure is the probability that there are exactly k sequencing or mapping errors in the column.
The p-value from this PMF is its tail sum, which is the sum of the shaded bars in the figure. In this
case,

∑
k>=K PrN (X = k ). This p-value is the probability that there are K or more errors in the

column, which is used to decide whether there are SNVs in the column.
Therefore, to compute the p-value, PrN (X = k ) must be calculated for all k . Prn (X = k ) can be

computed from Prn−1, based on the following cases:

(1) k varying bases are observed in the first (n− 1) bases, and the nth base is not a varying base;
(2) (k − 1) varying bases are observed in the first (n − 1) bases, and the nth base is a varying

base.

Prn (X = k ) is the sum of the probability of both cases. Given the probability that base n is
erroneous, pn , this can be expressed mathematically as follows:

o1 (n,k ) = Prn−1 (X = k ) × (1 − pn )

o2 (n,k ) = Prn−1 (X = k − 1) × pn

Prn (X = k ) =

{
o1 (n,k ) if k = 0

o1 (n,k ) + o2 (n,k ) if k > 0.

(1)

The function o1 computes the probability of the first case above being true and the function
o2 computes the probability of the second case above being true. Further note that Pr0 (X = 0) is
initialized to 1, as it is always true that there are exactly 0 varying bases in the first 0 bases of
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the column. With these initializations, this equation can naively be iteratively used to calculate
Prn (X = k ) for all k and for all n up to N . However, the original LoFreq paper proposed an
optimization that is mathematically equivalent. The p-value can be computed based on the formula
below:

Sn =
⎧⎪⎨
⎪
⎩

Prn−1 (X = K − 1) × pn if n = K

Sn−1 + Prn−1 (X = K − 1) × pn if n > K .
(2)

Here, SN is the p-value used to decide whether there are SNVs. Intuitively, Sn is the probability
that there are K or more errors in the first n bases. This is calculated as the sum of the probability
that there were K or more errors in the first n−1 bases plus the probability that there were exactly

K − 1 errors in the first n − 1 bases and the nth base is an error. Therefore, SN is the probability
that there are K or more errors in the column, which is equivalent to the tail sum of the PMF. Note
that this optimization means that Equation (1) would only need to be used to compute Prn−1 for k
values between 0 and K − 1 to compute Sn .

An important property of the problem is that the error rate and the probabilities can be extremely
small numbers. Directly applying Equations (1) and (6) could lead to floating-point underflow,
even when using double precision floating-point numbers. Therefore, to prevent underflow and
maintain numerical precision, the log of all of the probabilities are used in all calculations.

Thus, Equation (1) can be transformed to the form below (note that PLn (X = k ) is the natural
logarithm of Prn (X = k )):

ol1 (n,k ) = PLn−1 (X = k ) + ln(1 − pn )

ol2 (n,k ) = PLn−1 (X = k − 1) + ln(pn )

PLn (X = k ) =

{
ol1 (n,k ) if k = 0

loд_sum_exp (ol1 (n,k ),ol2 (n,k )) if k > 0.

(3)

Again, PL0 (X = 0) is initialized to ln(1). Recall that multiplication is simply addition in log
space. Addition is performed by log_sum_exp in log space. This could be performed as follows:
ln(exp (a) + exp (b)). However, the exponential calculations could overflow and this requires two
exponential and one logarithm operation [13]. Therefore, the following definition of log_sum_exp
is used instead:

loд_sum_exp (a,b) =

{
a + ln(1.0 + exp (b − a)) if a > b

b + ln(1.0 + exp (a − b)) if a ≤ b .
(4)

This eliminates one of the exponential operations and only exponentiates a number that is
smaller than the maximum of the inputs.

The optimized p-value computations can be computed in log space as follows:

SLn =

{
PLn−1 (X = K − 1) + ln(pn ) if n = K

loд_sum_exp (SLn−1, PLn−1 (X = K − 1) + ln(pn )) if n > K .
(5)

The core of LoFreq is shown in Algorithm 1. The algorithm follows directly from the previously
explained mathematics. In particular, Equations (3)–(5) are used to ultimately compute the p-value.

For each base, 1 ≤ n ≤ N , the algorithm iteratively computes part (0 ≤ k < K ) of the PMF
based on Equation (3) (lines 12–14). Before computing the PMF, it first reads the error probability,
pn , for the current iteration (line 5), and computes the logarithm of both the error rate and the
accuracy (lines 6 and 7). The p-value is then computed based on Equation (5) (lines 16–20). At the
end of each iteration, the current values are stored in their prev counterparts in preparation for
the subsequent iteration.
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ALGORITHM 1: Probability Calculation Algorithm.

Input: Error Probability array Err_arr , column depth N , number of varying bases K .

Result: Probability mass function when n = N .

1 Allocate PL[K]; // PLn (X =k ) for k from 0 to K − 1

2 Allocate PL_prev[K]; // PLn−1 (X =k ) for k from 0 to K − 1

3 PL_prev[0] = 0; // ln(1)

4 for n from 1 to N do

5 pn = Err_arr [n];

6 ln_pn = ln(pn );

7 ln_1_pn = ln(1.0 − pn );

8 if n < K then

9 PL_prev[n] = −1e100; // approx. ln(0)

10 end

11 bound = (n < (K−1)) ? n : (K−1);

12 for k from 1 to bound do

13 PL[k] = log_sum_exp(PL_prev[k] + ln_1_pn, PL_prev[k − 1] + ln_pn);

14 end

15 PL[0] = PL_prev[0] + ln_1_pn;

16 if n == K then

17 ln_pval = PL_prev[K − 1] + ln_pn;

18 else if n > K then

19 ln_pval = log_sum_exp(ln_pval_prev , PL_prev[K − 1] + ln_pn);

20 end

21 PL_prev = PL;

// moves data from PL to PL_prev ;

22 ln_pval_prev = ln_pval ;

23 end

24 return PL, ln_pval ;

3.2 Computation Characteristics

Table 1 characterizes 46 real SARS-CoV-2 datasets obtained from multiple sources. LoFreq takes
these datasets as input. Each of these SARS-CoV-2 datasets contains 29,903 columns. As previously
mentioned, every column has two key parameters, N and K . For each dataset, Table 1 shows the
characteristics of N and K for all columns within that dataset. The mean value of N is shown. N
ranges from 200,000 to 400,000 in common cases, but can be as large as nearly a million (dataset
L21). The distribution of K is shown in more detail. Besides mean and median, 75th percentile,
90th percentile, 99th percentile, and max values are also shown. These additional values show
that while K is small in common cases, it can occasionally be quite large. Taking dataset L2 as an
example, among all columns, the average value of K is 645, the 99th percentile is 3,219, but the
largest value is 200,863. As will be shown later, the value of K is critical to the accelerator design.
For better visualization, the datasets are presented in ascending order of K and divided into two
groups based on the value of K .

The table also shows the execution time using the state-of-the-art parallel implementation of
LoFreq. This implementation uses multiple CPU processes to parallelize the computation. First,
it divides the dataset into multiple regions, each consisting of many columns, and processes
each region using one single-threaded process. Then, it simply gathers the results from these
processes. We measured the end-to-end execution time of running LoFreq using 16 processes
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Table 1. SARS-CoV-2 Dataset Characteristics

Dataset Abbr.
N (Depth) K (Number of Varying Bases)

Exec Time (hours)
of 16-process CPUMean Std. Dev. Mean Std. Dev. Median p75 p90 p99 Max

SRR20774184 [3] S1 161,801 119,857 135 220 83 151 272 912 10,009 0.70
SRR19253115 [3] S2 186,646 148,768 141 403 75 141 262 1,106 26,501 1.01
SRR20774449 [3] S3 92,503 75,159 147 205 97 173 296 938 6,425 0.57
SRR21181448 [3] S4 201,463 183,481 153 305 82 169 333 1,097 13,617 1.12
SRR18781852 [3] S4 231,935 193,258 223 338 137 269 480 1,344 17,470 1.61
SRR21343573 [3] S6 221,099 193,148 268 1,439 141 304 555 1,682 168,303 1.80
SRR11177792 [3] S7 93,959 34,896 277 230 221 365 541 964 8,156 0.47
SRR21333713 [3] S8 315,505 263,217 289 500 156 333 654 2,133 18,654 2.67
SRR21343113 [3] S9 246,390 254,002 337 588 165 384 810 2,394 25,771 2.89
SRR16686249 [3] S10 198,982 142,163 343 632 164 379 819 2,605 30,772 1.77
SRR21345205 [3] S11 242,332 193,033 343 449 228 425 730 1,955 26,048 2.49
COVHA-P11-B04 [14] S12 253,004 75,507 347 430 293 404 556 1,214 61,107 1.44
SRR21182863 [3] S13 258,627 171,854 360 506 226 431 771 2,152 24,169 2.40
SRR21347132 [3] S14 283,287 284,738 392 653 169 498 994 2,776 21,472 3.60
SRR21347716 [3] S15 388,310 288,530 418 598 253 504 899 2,651 30,222 3.77
SRR20769207 [3] S16 434,298 301,942 455 896 263 538 962 2,940 70,311 4.57
SRR20769204 [3] S17 422,216 274,446 462 651 293 568 973 2,661 28,308 4.71
SRR20494172 [3] S18 322,330 214,143 468 674 285 553 998 2,878 23,842 3.65
SRR19302558 [3] S19 247,325 244,608 510 868 258 602 1,235 3,467 31,741 4.13
COVHA-P6-E05 [14] S20 349,853 132,891 547 382 470 654 897 1,827 13,612 3.42
SRR12380204 [3] S21 430,569 271,733 606 844 433 756 1,206 2,800 55,208 5.26

SRR21331921 [3] L1 294,881 245,603 615 873 330 741 1,473 4,000 26,182 4.91
SRR21347735 [3] L2 383,622 288,941 645 1,696 433 805 1,368 3,219 200,863 5.38
SRR20882805 [3] L3 318,529 257,317 652 975 353 792 1,497 4,331 22,972 5.39
COVHA-P8-F03 [14] L4 320,880 112,528 655 486 567 816 1,113 2,117 31,547 3.40
SRR21332795 [3] L5 361,633 312,553 683 990 368 867 1,674 4,506 50,698 6.49
SRR21178800 [3] L6 257,202 190,754 721 1,140 413 824 1,542 5,019 54,577 5.53
COVHA-P12-F07 [14] L7 238,276 62,935 724 383 658 894 1,175 1,953 8,542 2.75
SRR20928666 [3] L8 369,455 252,515 731 987 433 861 1,600 4,766 24,001 6.39
SRR20759035 [3] L9 333,566 266,118 740 1,051 419 960 1,716 4,469 47,186 6.48
COVHA-P11-F06 [14] L10 227,197 99,526 754 442 668 931 1,258 2,204 14,865 3.05
SRR21045270 [3] L11 295,626 201,697 771 1,315 488 914 1,561 4,646 55,519 5.07
SRR20769574 [3] L12 281,155 277,207 787 1,745 337 819 1,764 6,927 76,005 8.12
SRR20759528 [3] L13 277,007 268,096 820 1,410 389 971 1,976 5,782 46,630 7.58
SRR19287736 [3] L14 285,316 229,988 874 1,348 454 1,032 2,025 6,395 37,266 6.91
SRR20938293 [3] L15 352,827 200,088 948 852 713 1,211 1,895 4,058 18,021 7.30
COVHA-P1-B03 [14] L16 461,297 141,367 961 647 824 1,193 1,636 3,126 24,646 7.05
SRR20880842 [3] L17 317,584 215,732 965 1,074 697 1,244 2,058 4,714 57,248 7.22
SRR20882911 [3] L18 326,287 227,600 1,017 1,149 672 1,285 2,201 5,213 56,489 8.26
SRR20769571 [3] L19 375,350 253,473 1,021 1,649 588 1,196 2,156 6,807 71,274 9.73
SRR19289605 [3] L20 327,822 224,743 1,025 1,597 576 1,203 2,245 7,001 65,040 8.12
H2H-S20L002 [17] L21 943,993 112,699 1,106 1,098 884 1,284 1,841 4,064 43,420 14.53
SRR20769576 [3] L22 357,220 287,544 1,284 1,913 636 1,555 3,079 9,087 51,091 11.98
SRR20944431 [3] L23 455,981 245,527 1,584 1,400 1,201 2,031 3,092 6,665 26,169 13.54
SRR19306790 [3] L24 303,638 189,653 1,893 1,951 1,298 2,341 4,012 9,844 37,074 10.36
SRR19267282 [3] L25 215,465 193,169 4,766 5,209 2,847 6,642 11,372 24,316 51,977 32.88

on the 16 hardware-supported threads of an AMD Ryzen 7 5800X CPU. The last column in
Table 1 shows the results. More than half of the datasets take over 5 hours, and the longest takes
32.9 hours.

In our measurements, all of the CPU’s cores and threads are fully utilized until the very end of
the execution. This indicates that the CPU parallelization is effective. However, LoFreq is still slow.
The fundamental reason is that the computation of each individual column is slow, because of the
amount of work involved.

First, as shown in Algorithm 1, the core computation of each individual column has a total of
(N × K ) loop iterations. From the previous discussion on data characteristics, it is clear that this
number can be very large. Second, the computation in a single loop iteration is slow: log_sum_exp
on double-precision floating point numbers is an expensive operation, consisting of serialized
logarithm and exponential computations, as shown in Equation (4).
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Table 2. Breakdown of LoFreq’s Execution Time on SARS-CoV-2 Datasets

(Metric: Hours (Percentage))

Pre-processing Prob Calculation Other

SRR11177792 0.28 (7.20%) 3.54 (91.76%) 0.04 (1.04%)
SRR12380204 1.47 (3.54%) 40.01 (96.04%) 0.17 (0.42%)
COVHA-P11-F06 0.76 (3.31%) 22.02 (96.30%) 0.12 (0.39%)

Fig. 2. The dataflow of probability calculation algorithm.

We further identify the performance bottleneck. Table 2 shows the execution time breakdown
of LoFreq on several SARS-CoV-2 datasets. This data is collected on the 5800X CPU using a single
thread within a single process. Over 90% of the processing time takes place in the core probability
calculations (Algorithm 1). This indicates that we must optimize the core probability calculations
to accelerate LoFreq.

3.3 Parallelism

Fortunately, there is potential parallelism at multiple levels in the computation. While it is ex-
tremely challenging, if not impossible, for general-purpose processors to exploit all of the potential
parallelism in the computation, an FPGA is able to effectively do so.

At the top level, columns within one dataset are independent from each other, thus different
columns can be processed in parallel (column-level parallelism). Different instances of
Algorithm 1 can be launched to process columns in parallel. For each SARS-CoV-2 dataset, for
example, the total number of columns is fixed (29,903).

In the computation of each individual column, there are another three levels of parallelism. The
dataflow of Algorithm 1 is illustrated in Figure 2. First, within one outer loop iteration, different
inner loop iterations (including the computation of PL[0] and ln_pval ) are independent (inner-

loop parallelism). Therefore, the degree of parallelism isK in each inner loop. Second, computing
the logarithms of pn and (1−pn ) can be parallelized with any outer loop iteration prior to the nth
one (operation-level parallelism).

Finally, in every outer loop iteration, each element in PL depends only on two values (except
for PL[0]) computed in the previous outer loop iteration. Therefore, the computation of each PL
element can start once the input is ready, without having to wait for the previous outer loop
iteration to completely finish (wavefront parallelism).

3.4 Design Space

The multiple levels of parallelism and the diversity of the datasets pose challenges in the accelerator
design and implementation. Moreover, an FPGA has constraints on the design: FPGA resources are
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Table 3. Design Space

Use of Memory for Intermediate Data
SRAM DRAM

Parallelization
Inner Pipelining Section 4.2.1, 4.4.1 X
Outer Pipelining Section 4.2.2, 4.4.1 Section 4.2.2, 4.4.2

finite, and thus must be utilized wisely; certain design options can result in routing failure or low
clock frequency, which makes the design impractical. Therefore, a careful design space exploration
is necessary.

The accelerator design space is summarized in Table 3. Besides the design knobs of paralleliza-
tion and memory use, the number of PEs and CUs is another key knob spanning all four quadrants
in the table. Designs represented by the top right quadrant (DRAM + Inner Pipelining) are not
considered and thus it is marked with an X. The choice of using DRAM only improves function-
ality, not performance. Therefore, the choice of parallelization is orthogonal to the evaluation of
using DRAM. There is no need to evaluate both parallelization strategies for the DRAM designs.
And because the outer pipelining designs always outperform the inner pipelining ones (shown
in Section 6), only outer pipelining designs are considered and designs in top right quadrant are
ignored.

3.4.1 Parallelization. As mentioned in Section 3.3, there are multiple levels of parallelism in
the computation. An FPGA is able to exploit all of these levels of parallelism. However, given the
resource and design complexity constraints, what levels of parallelism to exploit and to what extent
is a challenging yet important question.

To exploit column-level and inner-loop parallelism, the design can exploit the number of hard-
ware units, which is a design knob that needs to be evaluated in every quadrant in Table 3.

Another key knob is how the loop iteration pipelining is done. An inner loop iteration consists
mainly of the log_sum_exp computation, which can be effectively pipelined in the PE. We use the
term inner pipelining to refer to this level of pipelining. Meanwhile, we refer to pipelining inner
loop iterations across two consecutive outer loop iterations as outer pipelining.

Inner pipelining can be easily achieved by the HLS compiler and significantly improves per-
formance. In contrast, outer pipelining is more complicated. It is more challenging to implement
because of data dependency. It can eventually increase resource use and design complexity, which
makes placement and routing more challenging. At the same time, the performance gain from
outer pipelining is uncertain.

3.4.2 Memory Use. Another key dimension of the design space is where to store the interme-
diate data. As illustrated in Algorithm 1, each outer loop iteration uses results computed from the
previous outer loop iteration. Therefore, the computed results need to be stored for the next itera-
tion. The size of intermediate data from each outer loop iteration is 8 × 2 × (K + 1) bytes. This is
because 2 intermediate arrays are needed (as shown in Algorithm 1), each of which stores (K + 1)
double-precision floating point numbers (size of 8 bytes). Because of the characteristics of K as
shown in Table 1, the memory requirement of the intermediate data is small in common cases, but
can be exceptionally large occasionally.

On an FPGA board, there is off-chip DRAM (with larger capacity but longer access latency) and
on-chip SRAM (with smaller capacity but shorter access latency). There are two design options:
using only SRAM and using both SRAM and DRAM.

Exclusively using DRAM to store all intermediate data is not considered, because it is not a
reasonable option at all: It is catastrophic to performance, under-utilizing on-chip SRAM resources,
and potentially makes routing more challenging.
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Fig. 3. Design of a column unit (CU).

4 ACCELERATOR DESIGN AND IMPLEMENTATION

The FPGA accelerator performs the core probability computation, Algorithm 1, of LoFreq, while
the rest of the application remains in software. The accelerator is implemented using the high-level
synthesis tools in the Xilinx Vitis Development Platform 2020.2.

This section introduces the FPGA LoFreq accelerator. It first describes the fundamental hardware
components, the column units and processing elements. Then, it presents the design space of the
accelerator design and discusses the tradeoff among different design points.

4.1 Hardware Units

4.1.1 Column Units. The FPGA accelerator is composed of multiple column units (CUs). Each
column unit operates independently on a single column at a time. Multiple CUs can process multi-
ple columns in parallel. Figure 3 shows the design of a CU. The general operation of the CU when
using only inner pipelining and storing all intermediate results in SRAM is as follows:

(1) The software dispatches a column computation to the column unit.
(2) The controller initiates a loop over the elements of the column (corresponding to the outer

loop in Algorithm 1 on line 4) after prefetching the first two error probabilities (p1 and p2)
and computing the initial logarithms (ln(p1) and ln(1 − p1)):

(a) The error probability, pn+2, is prefetched.
(b) The logarithms of pn+1 and 1 − pn+1 are computed.
(c) The previously computed logarithms on pn (ln_pn and ln_1_pn in the algorithm) are used

for this iteration.
(d) The main processing elements (PEs) will compute PLn (X = k ) for all k < K (lines

12–14 in Algorithm 1). Multiple PEs operate on different data in both a parallel and
pipelined manner. Each PE can initiate a new computation each cycle.

(3) The column unit returns the results to the software.

This process is repeated until all of the columns have been processed.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 53. Pub. date: September 2023.



An FPGA Accelerator for Genome Variant Calling 53:11

As previously mentioned, the column data is large, so it cannot be stored on the FPGA chip.
The error probabilities are stored in DRAM on the FPGA board and must be prefetched to keep up
with the computation. By storing all of the column data in DRAM, the design is decoupled from
the values of N for each column and is not memory-resource-limited. The column unit is able to
process columns with any value of N (as long as the column data fits in the 64 GB DRAM).

The most expensive operations within the computation are the logarithms and the exponentials.
A dedicated logarithm unit is used to compute the logarithms of pn+1 and 1−pn+1 during iteration
n. For the error probability to be available for these logarithm calculations, the prefetcher loads
pn+2 during iteration n. This forms a three-stage pipeline at the macro level of the column unit in
which the first stage fetches pn , the second stage computes the logarithms of pn and 1−pn , and the
third stage performs the column’s probability calculations to compute the resulting partial PMF
and p-value.

4.1.2 Processing Elements. The core computation of each CU is the computation of PLn (X = k ),
which is mostly the log_sum_exp calculation of Equation (4). Multiple PEs within the CU compute
PLn (X = k ) for different values of k in parallel. Furthermore, each PE is pipelined, allowing it to
initiate a new computation every cycle.

The column unit does not have dedicated hardware to compute SLn . Instead, the PEs are used for
that purpose. Once the PEs have computed all K −1 values of PLn in step 2d, a final computation is
issued to a PE to compute SLn . Note the similarities between Equations (3) and (5). SLn is actually
stored in the PLn array in the Kth location. This allows the initial mux to select whether to pass
through just PL_prev[k] (which is SLn−1 when k = K ) or PL_prev[k] + ln(1 − pn ) (which is
PLn−1 (X = k ) + ln(1 − pn ) when k < K ). A simple adder (not shown) handles the computation of
SLK during the Kth iteration of the outer loop.

4.2 Processing Element Pipelining

This section explores the pipelining design options. As discussed in the previous section, the PEs
are pipelined. However, there are two ways in which they can be pipelined. As a baseline, they are
only pipelined within a single outer loop iteration, which will be referred to as inner pipelining.
The design can also be extended to pipeline the PEs both within and across outer loop iterations,
which will be referred to as outer pipelining. This section will further explain inner pipelining,
its limitations, and how outer pipelining can overcome those limitations.

For a concise illustration of the issues, iter (n,k ) is used to represent the kth inner loop iteration
in the nth outer loop iteration. The term PE_depth refers to the PE pipeline depth, whose typical
value ranges from 80 to 100 on a Xilinx Alveo U250 FPGA.

4.2.1 Inner Pipelining. Figure 4 shows the execution of the computation with inner pipelining.
The X axis is the time measured in clock cycles and each bar below the axis shows the time span
of one of the computations: prefetching, logarithm, or inner loop iterations. The length of a bar
shows the number of clock cycles from the start to the finish of that computation. In the range
of outer loop iteration n, a new inner loop iteration within an outer loop is initiated every clock
cycle, as described in Section 4.1.2. The prefetching and logarithm computation (ln) are completely
overlapped with iter (n, 0), as an inner loop iteration always takes longer than prefetching and
computing logarithm. Meanwhile, the (n+1)-th outer loop iteration starts only after the nth outer
loop iteration is completed.

Figure 4(a) shows the drawback of inner pipelining: The fully pipelined PEs suffer from under-
utilization because of pipeline bubbles between consecutive outer loop iterations.

Consider iter (n+1, 0) as an example. As previously mentioned, iter (n+1, 0) takes the computed
results of iter (n, 0) as input (recall that PLn+1[k] requires PLn[k] and PLn[k − 1]). In Figure 4, T 1
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Fig. 4. Computation in a CU with inner pipelining.

is the time when the input data of iter (n + 1, 0) is ready. T 2 is the time after which the fully
pipelined PE has issued iter (n,K ). At this point, there is no more computation for iteration n, so
there are pipeline bubbles until iter (n,K ) completes. T 3 is the time when iter (n + 1, 0) actually
starts, because that is when all inner loop iterations in the nth outer loop have completed. With
inner pipelining, the PEs suffer from pipeline bubbles for (T 3 −max (T 2,T 1)) clock cycles.

Figure 4(a) shows the duration of the bubbles when K is so large that T 2 > T 1. In this case,
the pipeline can issue no new computations for (PE_depth − 1) cycles. In comparison, Figure 4(b)
shows a case where the duration of the bubbles is smaller. In this case, becauseT 2 < T 1 the pipeline
can issue no new computations for (T 3−T 1) cycles, which equals to K , while K is smaller than or
equal to PE_depth. Therefore, the duration of the pipeline bubbles will be small when K is small.

Thus, the duration of the pipeline bubbles in inner pipelining can be summarized as below:

Bubbles =
⎧⎪⎨
⎪
⎩

PE_depth − 1 if K > (PE_depth − 1)

K if K <= (PE_depth − 1).
(6)

Given the characteristics of K as shown in Table 1, the majority of columns would have a K
that falls into the first case. Therefore, a CU with inner pipelining can suffer from pipeline
bubbles ranging from 80 to 100 clock cycles for every outer loop iteration. As there are in total
N outer loop iterations, the total number of clock cycles on pipeline bubbles can be as large as
100 × N .
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Fig. 5. Computation in a CU with outer pipelining.

4.2.2 Outer Pipelining. Outer pipelining allows PEs to initiate a new computation every clock
cycle, eliminating bubbles in the PE pipeline. Therefore, the next outer loop iteration can start as
early as possible and be overlapped with the current outer loop iteration. In common cases, this
alleviates the pipeline bubble problem and improves performance.

Figure 5 illustrates the execution of outer pipelining. Outer pipelining works differently in two
different cases. The earliest possible time for iter (n+1, 0) to start is when both conditions are met:
The time when iter (n, 0) has finished (data dependency) and when iter (n,K ) has started (so the
PE becomes available). Based on the order of the finishing time of iter (n, 0) and the starting time
of iter (n,K ), outer pipelining needs to work differently.

In the first case, when K is large enough (K > (PE_depth − 1)), consecutive outer loop iter-
ations are fully pipelined. Figure 5(a) shows this scenario. Consecutive outer loop iterations are
highlighted with different colors for better visualization. As shown in Figure 5(a), iter (n + 1, 0)
starts exactly one clock cycle after iter (n,K ) starts. In this case, outer pipelining completely elim-
inates the pipelining bubbles found in inner pipelining. As mentioned in Section 4.2.1, this can
reduce nearly 100 × N clock cycles in execution time.

In the other case, when K is not large enough, iter (n, 0) finishes later than iter (n,K ) starts.
In this case, even when the PE becomes available, the next outer loop iteration cannot start
yet because of the data dependency on iter (n, 0). Therefore, bubbles must be inserted to ensure
that iter (n + 1, 0) does not start until iter (n, 0) is completed. Figure 5(b) illustrates this scenario:
iter (n, 0) is still not done one clock cycle after iter (n, 2) is done. Therefore, bubbles (bars marked
with text “bubble”) need to be continuously inserted until iter (n, 0) is done. It should be noted that
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outer pipelining still reduces clock cycles even with these bubbles. As shown in Figure 5(b), there
is a two-clock-cycle reduction for each outer loop iteration compared to inner pipelining.

4.2.3 Tradeoffs. While outer pipelining always reduces the number of cycles needed to com-
plete the overall computation (by at least a small amount), it requires additional resources. This
can impact the overall design, complicate timing closure, and create problems for placement and
routing. Therefore, it is necessary to evaluate the tradeoff between using inner pipelining on its
own compared to both inner and outer pipelining.

4.3 PEs vs. CUs

Given the finite amount of FPGA resources, there is a tradeoff between the number of PEs per CU
and the overall number of CUs. However, this performance tradeoff is not clear cut, as the benefits
and disadvantages of each design depend on the datasets being processed and the behavior of the
host system (to be discussed in Section 5).

More PEs in a column unit can exploit more inner-loop parallelism, but less column-level par-
allelism. While fewer columns can be processed in parallel, each column will be processed faster.
This is particularly helpful when there is imperfect load balancing, because the majority of CUs
sit idle while the final columns are processed. With more PEs in a column unit, this tail latency
will be reduced, as the final columns can be processed faster, minimizing the impact of the load
imbalance.

In contrast, a larger number of CUs, each with fewer PEs, can achieve higher levels of column-
level parallelization. Furthermore, there will be fewer outer pipelining bubbles, as discussed in
Section 4.2.2. This can potentially lead to faster processing times for the bulk of the computation.

4.4 Memory Use

This section explores the design option of where to store the intermediate data. As discussed in
Section 3.4.2, the memory size required is proportional toK . There are two potential options: using
only on-chip SRAM for intermediate data and using both SRAM and DRAM. The design adopting
the first option will be referred to as the SRAM design, and the other the DRAM design.

This section closely examines the two designs and analyzes the tradeoffs.

4.4.1 The SRAM Design. The SRAM design potentially has multiple benefits. First, every single
memory access will be fast, as the on-chip SRAM accesses take 1 to 3 clock cycles. Second, it has
the minimum amount of DRAM traffic, and this has advantages in both performance and resource
utilization. With less DRAM communication, the design will be much less likely to cause DRAM
contention and a related performance drop. From the resource perspective, the design requires less
DRAM-related logic, which can lead to resource savings.

However, this option is fundamentally limited. To ensure the computed results are correct, the
on-chip SRAM buffer for intermediate data needs to be as large as 8 × 2 × (K + 1) for the largest
possible K , as explained in 3.4.2. Using the max values of K in Table 1, i.e., 200,863, as an example,
it requires 3.06 MB on-chip SRAM for each CU. This can not only limit the number of CUs that
can be implemented, but also increase the difficulty of placement and routing. Moreover, in reality,
the largest possible K can be hard to know. Thus, it is difficult to determine an SRAM size that is
guaranteed to be large enough for any column.

4.4.2 The DRAM Design. The DRAM design resolves the storage limitation of the SRAM de-
sign. It uses the DRAM to store intermediate data and overlaps the DRAM load and store with
computations. In this way, it benefits from the 64 GB DRAM capacity without slowdown.
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Fig. 6. Computation in the DRAM design.

The main reason why each outer loop requires 8 × 2 × (K + 1) bytes for intermediate data is
because of the loop computation order. All outer loop iterations are processed in order, and the
(n + 1)-th outer loop iteration does not start until all inner loop iterations in the nth outer loop
iteration finish. All computed results from (K +1) inner loops (including the computation of PL[0]
and ln_pval ) need to be stored for the use in the next outer loop iteration. Therefore, the memory
requirement is proportional to K .

The DRAM design uses an alternative strategy: Each outer loop iteration computes only a fixed
number (denoted byW ) of—instead of all (K + 1)—inner loop iterations before proceeding to the
next outer loop iteration. W is a constant value that is determined before the hardware is imple-
mented. As a result, there can be more than one round of outer loop iterations whenW is smaller
than (K + 1), as visualized in Figure 6: In the first round, the firstW inner loop iterations in every
outer loop iteration are processed; in the second round, the nextW inner loop iterations in every
outer loop iteration are processed, and so on. (In columns where (K + 1) is smaller than or equal
to W , there is only one round of outer loop iterations.) This process repeats until all inner loop
iterations in every outer loop iteration are processed. In this way, only a fixed amount (8 × 2 ×W
bytes) of on-chip SRAM is needed to process columns with arbitrarily large K .

However, the dataflow of LoFreq poses a challenge: A large number of intermediate values must
be saved for a much longer period of time compared to the SRAM design. In Figure 6, the output of
iter (n,W −1) (the left single-hatched bar) is used not just by iter (n+1,W −1), but also iter (n+1,W )
(the right single-hatched bar), which complicates the problem: iter (n + 1,W ) is computed N outer
loop iterations after iter (n,W − 1). Therefore, the output of iter (n,W − 1) needs to be saved for N
outer loop iterations after being produced. Every block ofW inner loop iterations requires saving
one such value. This can be understood using Figure 2: Blocking the inner loop iterations can be
thought of as making a cut horizontally. As long asW is smaller than (K+1), such a cut will always
cross a dataflow arrow in every outer loop iteration. One such cross means that one output value
needs to be saved. Such an output value needing to be saved will be referred to as boundary values.

In total, there will be N boundary values to be saved in every round of outer loop iterations.
Given the characteristics of N as shown in Table 1, it is only practical to store them in DRAM.
While the sharp increase in DRAM accesses seems daunting, the DRAM design effectively hides
DRAM access latency by exploiting the fact that the final use of a boundary value is N outer
loop iterations away from where it is computed. Because N is large in common cases, there is
enough time for the DRAM design to store (to DRAM) and prefetch (from DRAM) every boundary
value. To be more specific, boundary values will be stored to DRAM one outer loop iteration after
they are computed, and they will be prefetched from DRAM one outer loop iteration before their
use. Figure 6 shows an example: In the first round, the boundary value from iter (n,W − 1) is
stored to DRAM in the (n + 1)-th outer loop iteration (shown in the left crosshatched bar); in
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the second round, that boundary value is prefetched in the nth outer loop iteration (shown in the
right cross-hatched bar) for its upcoming use. In this way, DRAM accesses are done in parallel
with computations.

4.4.3 Tradeoffs. Using a small and fixed-size of SRAM buffer, the DRAM design can handle
any column, regardless of its K value. However, even though DRAM accesses can be parallelized
with other computations, there can still be a potential slowdown caused by DRAM contention,
particularly when the design has multiple CUs working in parallel. Moreover, the design requires
more complicated control and DRAM access logic, which can lead to an increase in resource use.

In contrast, the SRAM design is limited, as it cannot handle columns with K exceeding the on-
chip SRAM capacity. However, it tends to have better performance and less resource use. Moreover,
in cases where it is certain that N will be small (thus, K will be small), the limitation of not being
able to handle large K will not be a problem.

5 HOST SYSTEM DESIGN AND IMPLEMENTATION

LoFreq is written in standard C as a single-threaded program. For LoFreq to utilize our Xilinx
Alveo U250-based accelerator, we had to change the LoFreq source code that runs on the host.

Under the Xilinx Vitis Environment, the accelerator is presented to the host system as an
OpenCL device. So, our changes to the LoFreq source code were to (1) use the OpenCL API to
initialize this device so our accelerator for the core probability computation on a column could be
invoked as an OpenCL kernel and (2) replace calls to the function that performs the core probabil-
ity computation on a column on the host processor with invocations of that OpenCL kernel. Since
the ordinary function calls replaced are synchronous, i.e., they do not return until the function
has completed, we invoke the OpenCL kernel synchronously. In other words, after enqueueing
commands to the OpenCL runtime that transfer the inputs to the U250’s DRAM, execute the ker-
nel, and transfer the results back to the host, the host waits for the results to be returned before
starting any work on the next column.

Once the core probability computation is accelerated by the U250, the parts of the computation
that remain on the host processor, such as preprocessing, will become a performance bottleneck
if they are executed sequentially. To parallelize all parts of LoFreq’s execution, its developers used
multiple processes. However, rather than modifying the LoFreq source code to implement mul-
tiprocess execution, they created a Python script that divides the dataset into chunks, runs the
unmodified (single-threaded) LoFreq program on each chunk in parallel, and merges the results
from each of the processes at the end. We directly use that Python script for multiprocessing in
our system: Each process works on one chunk and all processes run concurrently. This works fine,
because the Xilinx OpenCL runtime system allows multiple processes to concurrently execute mul-
tiple kernels on the FPGA device. Specifically, the OpenCL command queue allows the columns
submitted by different processes to be processed in parallel on different column units. The OpenCL
runtime automatically distributes the execution of the columns over the CUs as the CUs become
available.

As discussed in Section 3.2, the time that it takes to process different columns varies widely, de-
pending on the values of N andK for a given column. Dividing the dataset into chunks, i.e., groups
of consecutive columns, achieves a good balance between two competing factors: (1) minimizing
operating system overheads, such as process creation and continual context switching between
processes and (2) minimizing workload imbalance between the processes. We find that dividing
the datasets into many more chunks than the number of processor cores or hardware thread
contexts yields the best performance results. However, at the operating-system level, we observe
a subtle difference between the multiprocess LoFreq and our accelerated implementation that
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Table 4. The Hardware Configurations and Total Resource Usage for Different FPGA Designs

Hardware Configuration Individual CU Resource Use Total Resource Use

PE
Pipelining

Memory
Use (KB)

No. of
CUs

No. of
PEs per CU

Frequency
(MHz)

FF LUT DSP CLB FF LUT DSP

I/S/32 I S (1024) 3 32 300 10.81% 20.13% 13.7% 78.15% 33.25% 66.48% 39.53%
I/S/16 I S (1024) 7 16 300 5.52% 10.45% 6.19% 89.03% 40.44% 79.90% 43.45%
I/S/8 I S (1024) 14 8 300 2.97% 5.61% 3.63% 91.13% 44.88% 84.57% 50.86%
I/S/4 I S (1024) 24 4 300 1.76% 3.23% 2.35% 91.87% 49.11% 84.32% 56.49%
O/S/8 O S (1024) 14 8 300 2.18% 4.13% 4.57% 86.10% 41.35% 72.00% 73.90%
O/S/4 O S (128) 24 4 300 1.37% 2.43% 2.69% 89.30% 45.66% 73.92% 74.54%
O/D/8 O D (64) 13 8 300 2.41% 4.31% 4.68% 86.50% 41.98% 70.06% 70.33%

affects the tradeoff between these competing factors. Processes in our accelerated implementation
are rarely preempted by the operating system because their scheduling quantum has expired;
instead, they are voluntarily relinquishing the processor when they wait for the completion of
an OpenCL kernel on a column. Consequently, the number of context switches is primarily a
function of the number of columns and unrelated to the number of chunks, so increasing the
number of chunks, and thus the number of processes, to achieve better load balance does not
significantly increase the context switching overhead. Moreover, the OpenCL command queue
decouples these processes from the hardware column units, allowing each process to enqueue
columns that will be serviced as column units become available, making it practical to use more
processes than there are hardware column units.

6 EVALUATION

6.1 Experimental Setup

System Configuration. The system used for evaluating the accelerator designs consists of an
AMD Ryzen 7 5800X processor (with 8 cores and 16 hardware thread contexts), 128 GB of DDR4
3200 memory, a 1 TB Samsung 980 PRO SSD, and a Xilinx Alveo U250 card (Platform name: xil-
inx_u250_gen3x16_xdma_3_1) [7]. This system was running Ubuntu 18.04.4 LTS with Linux kernel
5.4.0 for compatibility with the Xilinx kernel module.

The host program was developed in OpenCL 1.2 with Xilinx XRT extensions, and the FPGA
design was written as an OpenCL kernel in C. The high-level synthesis and hardware implementa-
tion were done using Xilinx Vitis 2020.02, which uses Xilinx Vivado 2020.02 for logic optimization,
placement, and routing. Aggressive optimization strategies are used in placement and routing:
The SSI_SpreadLogic_high strategy is used for placement, and the AggressiveExplore strategy is
used for routing [6]. Physical optimizations were enabled. Individual column units were imple-
mented within one Super Logic Region [8] to minimize boundary crossings. Moreover, latency
and resource use of logarithm and exponential operations are configured for successful placement
and rounting. All of the evaluated FPGA designs are shown in Table 4.

Datasets. Table 1 describes the real-world datasets used throughout this evaluation.
These datasets come from the NCBI SARS-CoV-2 data repository [3] and recent clinical
studies [14, 17].

Metrics. The performance and power of different designs are evaluated and compared, with a
focus on performance. The performance is evaluated by measuring the wall clock time of execution.
Two types of power numbers are measured: FPGA-only power (without CPU power) and whole
system power (CPU + FPGA). The FPGA-only power is measured using the Xilinx Board Utility
tool (Xbutil 2020.2). During execution runs, the tool runs along on the host CPU, sampling and
reporting the FPGA power number at a sampling rate of 1 Hz. The whole system power is measured
using a P3 P4460 Kill-A-Watt monitor.
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Baseline. The stock multi-process implementation of LoFreq [5] is used as the baseline in the
performance evaluation. It is configured to divide the dataset into 112 chunks, which effectively
utilizes the 8 cores and 16 hardware thread contexts provided by the AMD Ryzen 7 5800X
processor.

6.2 Design Space

Table 4 shows all the points in the design space and their hardware configurations and resource
utilizations. The designs are named based on their configurations. In the Hardware Configuration
section, the key design options are presented. In the PE Pipelining column, I and O stand for inner
pipelining and outer pipelining, respectively. In the Memory Use column, S stands for using only
SRAM and D for using DRAM for intermediate data. The size (in KB) of the on-chip SRAM buffer
used in each CU is shown next to the memory type. For all S designs, the largest K a design can
handle is limited by that size. In contrast, O/D/8 can handle columns with arbitrarily large K while
using a fixed amount of on-chip SRAM (64 KB). The size is 64 KB because the constant value W
(introduced in Section 4.4.2) is empirically chosen to be 4,096.

The first four designs implement inner pipelining and use only SRAM for intermediate data.
They differ in the number of CUs and PEs per CU. The last three designs all implement outer
pipelining. O/S/8 and O/S/4 differ only in the number of PEs; O/S/8 and O/D/8 differ in memory
use and the number of CUs. Only power-of-2 numbers are considered for the number of PEs per
CU. The overhead of controlling the use of the PEs is prohibitive for other designs, so using a
power-of-2 leads to the most efficient use of resources within a CU.

Implementing outer pipelining and implementing DRAM prefetch/store add significantly to the
difficulty of placement and routing. For a design with 16 or 32 PEs, implementing outer pipelining
leads to routing failure (due to congestion). Thus, they are absent from the table. For O/D/8, it can
only implement 13 CUs instead of 14 as in O/S/8 for the same reason.

The rest of this section evaluates these designs mainly on their performance, but also presents
power consumption results. In Section 6.3, the performance of processing individual columns using
a single CU is evaluated, with a focus on the impact of three key design knobs: the number of
PEs, PE Pipelining, and Memory Use. In Section 6.4, the end-to-end performance is evaluated on
all datasets from Table 1, for the complete designs, each with multiple CUs. End-to-end power
consumption results are presented in Section 6.5.

6.3 Probability Calculation Speedup Results

This section presents speedup results for just the probability calculation on a column, which is the
computation that is accelerated by the FPGA. The computational cost of this workload is dictated
by the column’s values for N and K . N determines the number of outer loop (starting at line
4 in Algorithm 1) iterations and K determines the number of inner loop (starting at line 12 in
Algorithm 1) iterations. The performance of one single CU from each design in Table 4 is measured.

Figure 7 presents the speedup results. Each figure compares a different group of designs, high-
lighting the performance impact of turning a certain design knob. All three figures show the
speedup results measured on columns from datasets in Table 1. Each mark represents a column
data point. The Y axis value is the speedup. The X axis value of a mark is the column’s K value.
Only K is shown, while N is not, since K largely determines the speedup. This is because K deter-
mines the number of iterations of the inner loop, and most of the speedup comes from the array
of PEs parallelizing the computation.

6.3.1 Number of PEs. Figure 7(a) shows the speedup results of the designs varying only the
number of PEs, which dictates the level of inner-loop parallelization.
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Fig. 7. Single column unit speedup results.

At any given value of K , using a larger number of PEs increases the speedup. However, when K
is small, the speedup from increasing the PEs is marginal. Using the point where K is 1,000 as an
example, the speedup results are: 35× (I/S/32), 28× (I/S/16), 20× (I/S/8), and 13× (I/S/4). The perfor-
mance scaling is limited. This is mostly because PEs are underutilized with only inner pipelining,
as discussed in Section 4.2.1. In contrast, when K is larger, increasing PEs leads to a larger increase
in speedup. Using where K equals 3,000 as an example, the speedups are 69× (I/S/32), 46× (I/S/16),
27× (I/S/8), and 15× (I/S/4). In this case, increasing the number of PEs from 4 to 8 nearly doubles
the speedup.
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However, as shown in Table 4 (Individual CU Resource Use section), doubling the number of
PEs consistently doubles the resource utilization, which can directly reduce the number of CUs
that can be implemented.

6.3.2 PE Pipelining. Figure 7(b) shows the speedup of the outer pipelining designs and high-
lights their improvement over the inner pipelining designs. To show how the improvement
changes with K , the results of K from 1 to 8,000 are shown.

O/S/8 (marked by green x) shows a significant improvement over I/S/8 (marked by grey dot).
The performance improvement can be visualized as the area between the the curves of marks. The
larger the area, the greater the performance improvement is. In contrast, the improvement of O/S/4
over I/S/4 is smaller. For O/S/8, the improvement is most significant on columns whose K ranges
from 700 to 3,000; for I/S/4, that range is from 300 to 700.

The results also show outer pipelining leads to better performance improvement when the
number of PEs is larger and confirms that outer pipelining always improves performance on any
columns compared to inner pipelining. In both designs, there is a stage where the speedup grows
linearly as K increases. That is the region of K where outer pipelining needs to insert bubbles.

6.3.3 DRAM. Figure 7(c) shows the performance impact of the design option of using DRAM
to store intermediate data. In short, the performance is as good as O/S/8 on columns whose K is
less than 4,096 but suffers on columns whose K is larger than 4,096.

This is because the fixed on-chip buffer in O/D/8 is just large enough to hold the intermediate
data of 4,096 inner loop iterations. Therefore, for columns whose K is less than 4,096, there is no
on-board DRAM prefetch or store for the intermediate data. This indicates that intensive on-board
DRAM accesses result in a noticeable performance penalty.

6.4 End-to-end Performance

This section is organized to answer the following critical questions about the designs:

(1) What is the best configuration in terms of the number of CUs and the number of PEs?
(2) Is outer pipelining always better?
(3) Is there a performance penalty for the DRAM design? If so, by how much?

To that end, this section presents the end-to-end performance of all the designs in Table 4. All
designs are evaluated on end-to-end speedup over the multiprocess CPU baseline on processing
complete datasets from Table 1. As previously mentioned, the datasets are divided into two groups
based on the average value of K among all columns in that dataset. In all figures presented in this
section, the X axis shows the datasets, and they are placed from left to right in ascending order of
the average value of K .

To unleash the full performance of each FPGA design, we evaluate these designs using the
multi-process LoFreq described in Section 5. A fixed number of chunks is chosen for each design:
72 (I/S/32), 112 (I/S/16, I/S/8, O/S/8, O/D/8), 160 (I/S/4). It is unsurprising that more chunks are
needed as the number of CUs increases, as it is important to keep all CUs busy throughout the
entirety of the computation. As the columns within a chunk are processed sequentially, having
more chunks makes it more likely that the simple chunk-based load balancing will be successful
through the end of the computation.

6.4.1 CUs vs. PEs. Figure 8 highlights the tradeoff between having more CUs and having more
PEs per CU. In both sub-figures, the height of the bar indicates the end-to-end speedup.

Figure 8(a) shows the speedup results on datasets with larger K . The highest speedup among
the four designs is consistently over or around 30×. The largest observed is 59× using I/S/16 on
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Fig. 8. End-to-end speedup of I/S designs over the CPU baseline.

L25, which has the largest overall K value among all datasets. Figure 8(b) shows the speedup on
datasets with smaller K , where the most common speedup ranges from 10× to 20×.

By comparing the results in Figures 8(a) and 8(b), as well as the results within each figure from
left to right, it is clear that the end-to-end speedup is larger as the average value of K grows larger.
This is consistent with the results shown in Figure 7(a).

Among the four designs varying only in the number of PEs and CUs, I/S/8 performs the best
on almost all datasets (with two exceptions: L25 and S2). This is a strong indication that I/S/8
strikes the best balance between column level and inner-loop level parallelization. In L25, as the
dataset is divided into chunks, one chunk of data has a significantly larger workload than the rest
and becomes the tail bottleneck: It was the only unfinished chunk for the final 7 minutes of the
execution of I/S/8. As the computation within each chunk is sequential, I/S/8 was slower than
I/S/16 in processing the tail chunk. L25 is the only dataset exhibiting such a long single chunk tail
latency.

6.4.2 PE Pipelining. Figure 9 highlights the performance improvement of outer pipelining over
inner pipelining. In Figures 9(a) and 9(b), the Y axis shows the percentage of reduction in execution
time of O/S/8 over I/S/8, and of O/S/4 over I/S/4, respectively.

In both configurations, implementing outer pipelining always leads to an improvement in the
end-to-end performance. Moreover, how the improvement changes across datasets, which is es-
sentially how the improvement changes over K values, is consistent across O/S/8 and O/S/4. This
can be seen by comparing Figures 9(a) and 9(b) in how the heights of the bars change from left to
right.

The performance improvement of O/S/8 over I/S/8 is almost always larger than that of O/S/4 over
I/S/4. This is most obvious on the large K dataset group. This confirms again that outer pipelining
is more effective when there are 8 PEs rather than 4 PEs, which aligns with the results previously
shown in Figure 7(b).

Figure 10 directly compares the performance between the two outer pipelining designs. O/S/8
consistently outperforms O/S/4. Considering that O/S/8 already improves upon the best design
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Fig. 9. End-to-end performance improvement from outer pipelining.

Fig. 10. End-to-end speedup of O/S designs over the CPU baseline.

from the previous section (I/S/8), this effectively shows that O/S/8 is the optimal design in terms
of performance. Thus, O/S/8 is chosen for a closer examination.

In Figure 9(a), the performance improvement is commonly larger than or around 10% on the
larger K datasets (L1 to L25); the improvement is around 5% on the smaller K datasets (S1 to S21).

Referring back to Figure 7(b), the proportion of columns whose K is between 700 and 3,000
largely dictates the overall improvement of O/S/8 over I/S/8. Consider the datasets from L15 to
L24. Their mean, median, and 90th percentile of K indicates that a major portion of the columns
fall into the range where the improvement is significant.

There are cases when the overall improvement is small, less than 2%. This is most likely to
happen when a large number of columns have K values larger than 3,000. L25 is such a case. In
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Fig. 11. End-to-end speedup of O/D/8.

those cases, the performance is dictated by these columns, on which outer pipelining does not
achieve much improvement.

6.4.3 DRAM Design. Figure 11 highlights the performance of the DRAM design (Design O/D/8).
There is a consistent slowdown compared to Design O/S/8. The first reason is that the total number
of CUs is smaller (13 compared to 14), which reduces the column-level parallelism.

Another source of slowdown is the performance drop on larger columns, as shown in Figure 7(c).
In Figure 11(b), where the 99th percentile of K for all datasets is less than 4,096, the slowdown of
O/D/8 is smaller compared to that of Figure 11(a). In both figures, the slowdown tends to be larger
and larger from the left to right.

Still, even with the slowdown from having one less CU and the performance penalty caused by
constant DRAM accesses, the end-to-end speedup from O/D/8 is comparable to that from I/S/8.
The only exception is on L25, where the K are exceptionally large.

This not only highlights the advantage of outer pipelining, but indicates that the speedup of
design O/D/8 is still significant, outperforming designs I/S/4, I/S/16, and I/S/32.

6.5 End-to-end Power Analysis

The FPGA-only (without CPU) power and whole system (with CPU) power are presented and an-
alyzed in this subsection. For both types of power, the measurement is done throughout complete
execution runs on datasets. This subsection first shows how FPGA-only power consumption varies
across accelerator designs and then analyzes the whole system (including CPU and FPGA) power
and energy efficiency.

6.5.1 FPGA-only Power and Energy. FPGA-only power numbers are sampled throughout an
execution run at an interval of 1 second, based on the methodology described in Section 6.1. This
measurement is done individually for each design on six representative datasets. The distribution
of measured FPGA-only power numbers is shown in the box plots in Figure 12. In the box plots, the
top of the rectangle box is the 75th percentile value (Q3), the bottom is the 25th percentile value
(Q1), and the line within the rectangle box is the median value. The Q3, Q1, and median values
exhibit the power characteristics of different designs.

From all six box plots in Figure 12, it is shown that the power consumption varies across accelera-
tor designs. The characteristics of such variations are consistent across all six datasets. The overall
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Fig. 12. Distribution of measured FPGA-only power during the end-to-end execution on multiple datasets.

power consumption of the first four designs (I/S/32, I/S/16, I/S/8, I/S/4) increases as the number
of PEs per CU decreases. This is because designs with less PEs per CU implement more CUs and
have a higher overall resource utilization, as shown in the Total Resource Use column in Table 4.
For example, the CLB utilization rate of I/S/32 and I/S/4 are 78.15% and 91.87%, respectively.

The design choice of outer pipelining tends to increase power consumption. On all six datasets,
the power of O/S/8 is consistently higher than that of I/S/8, and similarly for O/S/4 versus I/S/4.
Meanwhile, the impact of memory use is less obvious. The power of O/S/8 and O/D/8 are at a
similar level.

To help understand the box plots, Figure 13 shows the raw sampled FPGA-only power numbers
over time throughout complete execution runs. Two datasets with largely different characteristics
are chosen for demonstration: SRR21333713 (with small K) and SRR19306790 (with large K). The
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Fig. 13. Measured FPGA-only power consumption throughout execution runs.

large variation of power consumption during an execution run is the main reason why some boxes
in Figure 12 are tall.

For datasets with larger K, such as the one shown in Figures 13(c) and 13(d), the power con-
sumption is high for the majority of time (active phase) and then gradually decreases towards the
end (tail phase). During the tail phase, the power is reducing, because there is not enough chunks
of columns remaining to keep the FPGA highly utilized as more chunks are finished. This char-
acteristic is less obvious but still exists on the dataset with smaller K. On datasets with smaller
K, as shown in Figures 13(a) and 13(b), because computation workload of columns tends to be
lighter, the FPGA is more often under-utilized even during the active phase. Therefore, the power
consumption is less stable during the active phase.

Overall, designs with higher performance, such as O/S/8 and I/S/8, tend to be higher in power.
The FPGA-only energy consumption is not directly measured due to the lack of tool support. How-
ever, despite the higher power, the higher performance designs have shorter execution time. Based
on the execution time and the sampled power numbers, the total energy consumption of the higher
performance designs are still lower than that of the lower power designs.

6.5.2 Whole System Power and Energy. The whole system power is measured using the Kill-A-
Watt monitor, as described in Section 6.1. During the measurement, the whole system power is
mostly stable throughout an execution run. Therefore, for each execution run, the most common
power consumption number is chosen from the monitor for analysis. While not directly measured
using the monitor, energy consumption of individual execution runs are estimated from execution
time and power numbers.

Based on the estimation, it is clear that using the accelerator leads to a total energy consumption
reduction compared to the CPU baseline. The execution run on dataset SRR20928666 is used as an
example. In our measurement, the power of the CPU baseline (described in 6.1) is 155W . For the
accelerator system, the design with the highest power consumption (O/S/8) is chosen for analy-
sis. The accelerator system has a power of 260W (including CPU and FPGA power). Despite the
higher power, the execution time is much shorter based on the end-to-end speedup results from
Section 6.4. Thus, the total energy consumption of the accelerator system is much less. The CPU
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baseline and the accelerator system take 23,000 seconds and 630 seconds, respectively. Based on
the power and execution time, the approximate energy consumption reduction is 22×.

6.6 Summary

The evaluation section has comprehensively explored the design space of the accelerator. This
subsection first summarizes the overall results and then draws conclusions about the accelerator
design space exploration.

6.6.1 Overall Results. First, design O/S/8 achieves the highest speedup over the baseline and
thus the best performance. This highlights the impact of implementing outer pipelining and choos-
ing a proper number of CUs and PEs. The power consumption varies across designs, and higher
performance designs (O/S/8 and I/S/8) tend to have a higher power consumption. Despite the
higher power, the higher performance designs are more energy efficient because of shorter execu-
tion time. Similarly, compared to the baseline CPU system, the accelerator system (including CPU
and FPGA) tends to be much more energy efficient, thanks to greatly reduced execution time.

In terms of functionality, all designs can produce correct results (exact same results as the soft-
ware) on columns whoseK is smaller than 65,536. Meanwhile, only design O/D/8 produces correct
results, regardless of how large K is: It is able to produce correct results processing columns with
any sizes of K (as long as they fit in the 64 GB on-board DRAM). The performance of O/D/8 is
worse than O/S/8 but is similar to I/S/8.

6.6.2 Conclusions. The design space exploration has identified O/S/8 and O/D/8 as the two
overall best designs but with different tradeoffs. O/S/8 has the best performance but is limited in
functionality; O/D/8 has no limitations in functionality at all but is slower compared to O/S/8.

All three design knobs (the number of PEs and CUs, PE pipelining, DRAM use) are critical to
the accelerator design and implementation. Implementing outer pipelining is key to performance,
as it is always better than inner pipelining. Choosing the number of CUs and PEs is also critical
to performance. Meanwhile, using DRAM for intermediate data storage eliminates restrictions on
functionality so the accelerator can produce correct results on any columns.

6.6.3 Portability Discussion. The accelerator design space does not change across different hard-
ware platforms: What the design knobs are (the number of PEs and CUs, PE pipelining, DRAM use)
remains the same. Meanwhile, when the hardware platform changes, all three knobs need to be
tuned to accommodate the new resource and platform constraints. Tuning the number of PEs and
CUs is straightforward. The other two knobs also need to be tuned, because their performance
impact and resource use can be different. Thus, when the target hardware platform changes, the
infrastructure of the accelerator remains the same, while individual design knobs need to be tuned
for best performance.

7 RELATED WORK

A wide range of FPGA-based accelerators have been developed for important bioinformatics
computation, such as Read Mapping [9, 10, 12, 15, 16, 18, 19, 21, 24, 28, 32, 33], Variant Call-
ing [1, 11, 22, 31, 37], Alignment Refinement [36], and Base Quality Score Recalibration [26].

For Variant Calling, most of the existing work focuses on the GATK HaplotypeCaller [27, 29]
and its application to human genome data [1, 11, 22, 31, 34]. Unlike LoFreq, which is alignment-
based, GATK is a local assembly-based variant caller. The GATK HaplotypeCaller is specifically
designed to perform variant calling on low-depth human genome data, while LoFreq specializes
in calling low-frequency variants on genome data with high depth.
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The state-of-the-art implementation of LoFreq is the stock multi-process implementation [5].
Kille et al. [23] proposed a Poisson-Binomial approximation technique to LoFreq. This technique
computes an approximation, instead of the exact pvalue, with lightweight computation to filter out
columns. This technique is orthogonal to our contributions to accelerate the exact computation.

Nvidia Clara Parabricks is a software suite of common Whole-Genome Sequencing analysis
tools that are optimized for running on high-end Nvidia GPUs [4]. Recently, LoFreq was incorpo-
rated as part of the pipeline, but it is limited to variant calling on somatic human genome data
only. Somatic human genome data has different characteristics from viral data. There are up to
5 orders of magnitude more columns, but each column is up to 4 orders of magnitude smaller. This
makes it such that there is limited intra-column parallelism, so Parabricks focuses on mapping the
inter-column parallelism to the GPU. Parabricks is able to achieve a 6× speedup over LoFreq on
such data using four Nvidia V100 GPUs [2].

8 CONCLUSION

This article has presented the design of an FPGA-based accelerator for the LoFreq variant caller
that can achieve up to 51.7× speedup on the end-to-end execution of LoFreq on real SARS-CoV-2
datasets. This speedup is achieved over the state-of-the-art parallelized software version of LoFreq
that efficiently utilizes 16 hardware threads. This article has also presented a design space analysis
of the accelerator that shows that a single column unit can speed up the core computation by up to
120×, but that there are tradeoffs along several dimensions, including parallelism, pipelining, and
intermediate storage. This accelerator has important applications to real-world genomic analysis,
as LoFreq excels at identifying low-frequency variants and is widely used, but suffers from long
execution times.
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