
An FPGA Accelerator for Genome Variant Calling
Tiancheng Xu
Rice University
txu@rice.edu

Scott Rixner
Rice University
rixner@rice.edu

Alan L. Cox
Rice University
alc@rice.edu

Abstract—In genome analysis, it is often important to identify
variants from a reference genome. However, identifying variants
that occur with low frequency can be challenging, as it is
computationally intensive to do so accurately. LoFreq is a widely
used program that is adept at identifying low frequency variants.
This paper presents an FPGA-based accelerator for LoFreq. In
particular, this accelerator is targeted at virus analysis, which is
particularly challenging, compared to human genome analysis, as
the characteristics of the data to be analyzed are fundamentally
different. This accelerator can achieve up to 120× speedups on
the core computation of LoFreq and speedups of up to 32.4×
across the entire program.

I. INTRODUCTION

Genome analysis has become an important computing
workload as we work towards personalized medicine, better
understanding diseases, and other basic scientific inquiry.
One important aspect of genome analysis is variant calling.
Variant calling is the process of identifying variants from a
reference genome in genetic data. A typical pipeline consists
of the following three stages. First, genomes are read by a
sequencer to collect raw snippets of sequence data (called
“reads”). Second, the reads are aligned and mapped to a
reference genome (called “read mapping”). Finally, differences
between the reads and reference genome are examined and
variants are identified (called “variant calling”). Note that this
is not as trivial as looking for differences, because it involves
distinguishing between sequence read errors, read mapping
errors, and true genome variations (“variants”).

LoFreq is an alignment-based variant caller that can accu-
rately detect very rarely occurring variants [27], [31]. In partic-
ular, LoFreq accurately distinguishes between low frequency
variants and errors in sequencing or mapping using rigorous
statistical modeling. Unfortunately, LoFreq’s effectiveness at
detecting low frequency variants comes at a performance cost.
LoFreq is slower than other variant callers. Often, iVar [18]
is used instead of LoFreq, as it is faster. However, it is less
sensitive, so it may miss low frequency variants.

Despite its performance disadvantage, LoFreq’s sensitivity
can be invaluable. For example, since the outbreak of COVID-
19, LoFreq has been heavily used to track inter-host variants
and the evolutionary dynamics of SARS-CoV-2 [22]. It is
therefore important to improve the overall performance of
LoFreq in order to enable detection of low frequency variants
to further biological progress, understanding, and innovation.

The shape of the genomic dataset influences the available
parallelism within the core LoFreq algorithm. There are three
important parameters that characterize a dataset upon which
variant calling is performed. The first is the length of the
genome. All of the reads corresponding to a base (nucleotide)
in the reference genome form a column. Each column can be
processed independently, providing one source of parallelism.
The second parameter is the depth of each column, which is
the number of bases in that column. Each column may have
a different number of bases in it, as the reads will not be
mapped uniformly across the genome. The last parameter is
the number of bases that are different from the reference base
within a column. This parameter will also vary by column. The
computational workload within a column is proportional to the
product of the last two parameters. Unfortunately, compared to
parallelization across columns, parallelization within a column
is more challenging because of data dependencies that are
inherent to the algorithm.

This paper presents an FPGA-based accelerator for the
LoFreq variant caller. While the LoFreq algorithm is the same
regardless of the parameters described above, the accelerator
design is driven by the characteristics of virus data, which
has relatively short genome lengths but large and varying
depths. This is one important case in which the available
parallelism is more difficult to exploit and is well suited to
custom hardware acceleration. The accelerator performs the
core probability calculations of LoFreq in order to identify
variants. The accelerator design consists of several column
units. Each column unit is designed to process a single column
of data at a time. The column units make use of prefetching,
pipelining, and parallelization to efficiently identify variants in
that column. LoFreq processes every column independently, so
once a column unit completes the computation for one column,
it can begin processing another column. Furthermore, multiple
column units can operate on different columns independently
and in parallel.

Each column unit consists of multiple processing elements
that operate on different portions of the computation within
the column simultaneously. As LoFreq deals with very small
probabilities and is trying to detect variants that occur with low
frequency, these processing elements operate on very small
numbers that need high precision. Therefore, all operations
use double precision floating point arithmetic and all compu-
tations are done in log-space to avoid floating point underflow.
This means that the key computations within a processing
element are logarithms and exponentials. These computations978-1-6654-8332-2/22/$31.00 ©2022 IEEE

are expensive in terms of both latency and resource use. The
processing element design is optimized to take into account
these long latency operations.

Using high level synthesis, this paper performs a design
space analysis of the accelerator architecture trading off the
number of column units vs. the number of processing elements
within each column unit to show how to best utilize the FPGA
resources. A column unit with 32 processing elements can
speed up the core computation of LoFreq by up to 120× over
the software version. Furthermore, the best overall accelerator
design is able to speed up the entire application by 10.2–32.4×
compared to a parallelized software version of LoFreq that
utilizes 16 hardware CPU threads.

II. GENOMICS ANALYSIS

The first step in a genomics analysis pipeline is sequencing.
Short genome fragments are read using a sequencer. As
previously stated, these fragments are known as reads. They
can be from anywhere within the genome and may contain
errors due to the nature of sequencing. The error rate of the
sequencer is generally well known.

The next step is to perform read mapping. Read mapping
is the process that maps these reads to a reference genome
in order to determine where the short read came from in
the longer DNA sequence. Note that again, reads may be
incorrectly mapped to the reference genome, as there are both
potential errors in the read from the sequencer and potential
mutations from the reference in the read fragment. Once all
of the reads are aligned and mapped to the reference genome,
every position in the reference genome will be covered by
many reads. At a given position, genome bases (nucleotides)
from all reads that cover this position form a column of
genome bases. As stated in the previous section, such a column
of bases is referred to as a column, and the total number of
bases in a column is known as the depth. The depth of a
column is denoted by N .

Within a column, there can exist bases that differ from the
corresponding reference base and the majority of other bases
in the column. Such a varying base could either be an error
from the previous stages (sequencing or read mapping), or
a true genome variation, a Single Nucleotide Variant (SNV),
that is of significant interest. Therefore, each base in a column
is associated with a quality score that is computed from the
sequence quality and the mapping quality of that read. The
probability that the base is erroneous can be computed directly
from the quality score.

Variant callers take aligned sequences and their quality
scores as input and attempt to identify variants in the data,
distinguishing between SNVs and errors. Variant calling on
SARS-CoV-2 genome data poses a unique challenge. Study
of the SARS-CoV-2 genome has much deeper columns, with
depths as high as 1,000,000, compared to that of human
genome data which typically have depths from 30 to 50. A
major challenge is to distinguish SNVs with extremely low
frequency from errors in such large columns. These SNVs
are of great significance but difficult to identify because

sequencing machines and read mappers produce errors at a
similarly low frequency.

LoFreq is a variant caller specialized in solving this chal-
lenge. LoFreq can accurately distinguish low frequency SNVs
from sequencing and mapping errors by virtue of its unique
and rigorous statistical modeling. It examines each column in
the alignment independently. For each column, LoFreq models
errors in that column using a Poisson-Binomial distribution. If
the number of varying bases is inconsistent with the computed
distribution, then SNVs most likely exist.

III. LOFREQ AND ITS COMPUTATION

As previously mentioned, LoFreq is able to identify SNVs
even when their frequency of occurrence is as low as that of
sequencing and mapping errors. However, this makes LoFreq
much slower than other variant callers, as it must do more
computation to identify low frequency variants.

As input, LoFreq takes a file of reads that have already been
mapped to a reference sequence along with quality scores,
which are a measure of confidence that both the read and the
mapping are correct. Before processing each column, LoFreq
initially must perform preprocessing on this data to do three
things. First, the entire column must be extracted from the
collection of mapped reads. This is non-trivial, as it involves
scanning a region of the file to find all of the bases that belong
in that column. Second, the error probability for each base
must be calculated from its associated quality score. Finally,
the number of observed varying bases from the reference
genome in the column must be counted.

After preparing the column, the core probability calculation
uses the depth of column (N), the number of observed varying
bases in the column (K), and the error probabilities to decide
whether there are SNVs among the observed varying bases.

A. Core Computation

The core of LoFreq operates on each column independently
of all other columns. It models sequencing and mapping errors
of an individual column in a Poisson-Binomial distribution.
The intuition is that if the number of observed varying bases
is not consistent with the error distribution, then chances are
high that SNVs exist; otherwise, these varying bases are most
likely sequencing or mapping errors.

In a column, each individual base is modeled as an inde-
pendent Bernoulli trial. The error probability of the nth base,
pn, indicates the probability that the base is a sequencing
or mapping error. Using this model, the algorithm calculates
the p-value to confirm or refute the null hypothesis that all
observed varying bases in the column are errors. A predeter-
mined threshold, t, is used to determine whether or not the null
hypothesis is true. If the calculated p-value is greater than t,
then the null hypothesis is not wrong and all observed varying
bases are most likely errors. If the calculated p-value is less
than or equal to t then the null hypothesis is likely incorrect;
therefore there is strong evidence for the existence of SNVs.

Consider the case where K varying bases are observed in
a column which has N bases in total. Prn(X = k) is the

0 1

p-value:

2 ... K3 4 K-1 N

Fig. 1: Probability Mass Function.

probability of observing exactly k varying bases in the first
n bases of this column. Figure 1 shows the probability mass
function (PMF) of PrN (X=k) with respect to k. PrN (X=k)
is the probability of observing exactly k varying bases in
the entire column. Each bar in the figure is the probability
that there are exactly k sequencing or mapping errors in the
column. The p-value from this PMF is its tail sum, which
is the sum of the shaded bars in the figure. In this case,∑

k>=K PrN (X=k). This p-value is the probability that there
are K or more errors in the column, which is used to decide
whether there are SNVs in the column.

Therefore, in order to compute the p-value, PrN (X=k)
must be calculated for all k. Prn(X=k) can be computed
from Prn−1, based on the following cases:

1) k varying bases are observed in the first (n− 1) bases,
and the n-th base is not a varying base;

2) (k − 1) varying bases are observed in the first (n − 1)
bases, and the n-th base is a varying base. Prn(X=k)
sums the probability of both cases.

Given the probability that base n is erroneous, pn, this can
be expressed mathematically as follows:

o1(n, k) = Prn−1(X=k)× (1− pn)

o2(n, k) = Prn−1(X=k − 1)× pn

Prn(X=k) =

{
o1(n, k) if k = 0

o1(n, k) + o2(n, k) if k > 0

(1)

The function o1 computes the probability of the first case
above being true and the function o2 computes the prob-
ability of the second case above being true. Further note
that Pr0(X=0) is initialized to 1, as it is always true that
there are exactly 0 varying bases in the first 0 bases of the
column. With these initializations, this equation can naively
be iteratively used to calculate Prn(X = k) for all k and for
all n up to N . However, the original LoFreq paper proposed
an optimization that is mathematically equivalent. The p-value
can be computed based on the formula below:

Sn =

{
Prn−1(X=K − 1)× pn if n = K

Sn−1 + Prn−1(X=K − 1)× pn if n > K
(2)

Here, SN is the p-value used to decide whether there are
SNVs. Intuitively, Sn is the probability that there are K or
more errors in the first n bases. This is calculated as the sum

of the probability that there were K or more errors in the first
n− 1 bases plus the probability that there were exactly K− 1
errors in the first n − 1 bases and the nth base is an error.
Therefore, SN is the probability that there are K or more
errors in the column, which is equivalent to the tail sum of
the PMF. Note that this optimization means that equation 1
would only need to be used to compute Prn−1 for k values
between 0 and K − 1 to compute Sn.

An important property of the problem is that the error rate
and the probabilities can be extremely small numbers. Directly
applying equation 1 and equation 2 could lead to floating-
point underflow, even when using double precision floating-
point numbers. Therefore, to prevent underflow and maintain
numerical precision, the log of all of the probabilities are used
in all calculations.

Thus, equation 1 can be transformed to the form below (note
that PLn(X=k) is the natural logarithm of Prn(X=k)):

ol1(n, k) = PLn−1(X=k) + ln(1− pn)

ol2(n, k) = PLn−1(X=k − 1) + ln(pn)

PLn(X=k) =

{
ol1(n, k) if k = 0

log sum exp(ol1(n, k), ol2(n, k)) if k > 0

(3)

Again, PL0(X = 0) is initialized to ln(1). Recall that
multiplication is simply addition in log space. Addition is
performed by log_sum_exp in log space. This could be
performed as follows: ln(exp(a) + exp(b)). However, the
exponential calculations could overflow and this requires two
exponential and one logarithm operation [13]. Therefore, the
following definition of log_sum_exp is used instead:

log sum exp(a, b) =

{
a+ ln(1.0 + exp(b− a)) if a > b

b+ ln(1.0 + exp(a− b)) if a ≤ b
(4)

This eliminates one of the exponential operations and only
exponentiates a number that is smaller than the maximum of
the inputs.

The optimized p-value computations can be computed in
log space as follows:

SLn =

PLn−1(X=K − 1) + ln(pn) if n = K

log sum exp(SLn−1, if n > K

PLn−1(X=K − 1) + ln(pn))

(5)

The core of LoFreq is shown in Algorithm 1. The algorithm
follows directly from the previously explained mathematics.
In particular, equations (3), (4), and (5) are used to ultimately
compute the p-value.

For each base, 1 ≤ n ≤ N , the algorithm iteratively
computes part (0 ≤ k < K) of the PMF based on equation (3)
(lines 12 to 14). Before computing the PMF, it first reads
the error probability, pn, for the current iteration (line 5),

Algorithm 1: Probability Calculation Algorithm.
Input: Error Probability array Err arr, column depth

N , number of varying bases K.
Result: Probability mass function when n = N .

1 Allocate PL[K]; // PLn(X=k) for k from 0
to K − 1

2 Allocate PL prev[K]; // PLn−1(X=k) for k
from 0 to K − 1

3 PL prev[0] = 0; // ln(1)
4 for n from 1 to N do
5 pn = Err arr[n];
6 ln pn = ln(pn);
7 ln 1 pn = ln(1.0− pn);
8 if n < K then
9 PL prev[n] = −1e100; // approx. ln(0)

10 end
11 bound = (n < (K−1)) ? n : (K−1);
12 for k from 1 to bound do
13 PL[k] = log sum exp(PL prev[k] + ln 1 pn,

PL prev[k − 1] + ln pn);
14 end
15 PL[0] = PL prev[0] + ln 1 pn;
16 if n == K then
17 ln pval = PL prev[K − 1] + ln pn;
18 else if n > K then
19 ln pval = log sum exp(ln pval prev,

PL prev[K − 1] + ln pn);
20 end
21 PL prev = PL;

// moves data from PL to PL_prev;
22 ln pval prev = ln pval;
23 end
24 return PL, ln pval;

and computes the logarithm of both the error rate and the
accuracy (lines 6 and 7). The p-value is then computed based
on equation (5) (lines 16-20). At the end of each iteration,
the current values are stored in their prev counterparts in
preparation for the subsequent iteration.

B. Computation Characteristics

Table I shows the execution time breakdown of LoFreq on
several SARS-CoV-2 datasets. This data is collected on an
AMD Ryzen 7 5800X CPU using a single thread within a sin-
gle process. This table illustrates two important characteristics
of LoFreq on important, real-world datasets. First, processing
can take quite a long time (over 41 hours on SRR12380204).
Second, over 90% of the processing time takes place in the
core probability calculations (Algorithm 1).

Fortunately, there are multiple sources of potential paral-
lelism in the workload. The first is that different inner loop
iterations (shown in lines 12 to 14 in Algorithm 1) can be
fully parallelized (intra-column parallelism). The challenge
here is that intra-column parallelism is irregular because the

TABLE I. A breakdown of LoFreq’s execution time on
SARS-CoV-2 datasets

(Metric: Hours (Percentage)).

Pre-processing Prob Calculation Other

SRR11177792 0.28 (7.20%) 3.54 (91.76%) 0.04 (1.04%)
SRR12380204 1.47 (3.54%) 40.01 (96.04%) 0.17 (0.42%)
COVHA-P11-F06 0.76 (3.31%) 22.02 (96.30%) 0.12 (0.39%)

amount of parallelism depends on the parameter K, which
varies among columns.

Second, different columns within a dataset can be processed
in parallel (inter-column parallelism). Different instances of
Algorithm 1 can be launched to process columns in parallel.
For each SARS-CoV-2 alignment dataset, for example, the
total number of columns is fixed (29,903), while the com-
putation workload of each column can vary drastically. The
reason is that the parameters N and K can vary drastically
among columns.

Moreover, the three different types of operations in an outer
loop iteration, i.e., loading pn, calculating the logarithm of pn,
and the inner loop, can be pipelined.

Due to the nature of the problem, all input and intermediate
data are represented in double-precision floating point. On
an FPGA, computations on double-precision are less efficient
if not carefully tuned. In LoFreq, the fundamental opera-
tions are logarithm and exponential. The key computation
log_sum_exp includes serialized exponential and logarithm
operations, which has a long critical path latency.

The key input error rate array can take a non-trivial amount
of memory to store. For example, it requires 7.63 MB of
memory when N is 1, 000, 000. This makes it impractical to
store all of the input data on-chip.

The state-of-the-art implementation of LoFreq has used
CPU multi-processing to accelerate the computation. However,
Lofreq is still slow. As an example, when LoFreq is multi-
processed using 16 CPU threads, the end-to-end running time
on the SRR12380204 dataset is still 6.1 hours long.

IV. ACCELERATOR DESIGN AND IMPLEMENTATION

The FPGA accelerator performs the core probability com-
putation, Algorithm 1, of LoFreq, while the rest of the
application remains in software. The FPGA implementation’s
output is identical to the software version. The accelerator is
implemented using the high level synthesis tools in the Xilinx
Vitis Development Platform 2020.2. This section introduces
the design of the FPGA LoFreq accelerator.

A. Column Units

The FPGA accelerator is composed of multiple column units
(CUs). Each column unit operates independently on a single
column at a time. Multiple CUs can process multiple columns
in parallel. Figure 2 shows the design of a CU. The general
operation of the CU is as follows:

1) The software dispatches a column computation to the
column unit.

Prefetching Unit

Logarithm Unit

 On-chip
Memory

ln(1.0-pn)

PL_prev[k] exp

mux

add
sub

sub
mux add log

a > b?
Y

b

a N

add
k == K?

N

Y

add

add

1.0
N

Y

ln(pn)

PL_prev[k-1]

Control Unit

mux

a > b?

Processing Element (PE)

control signal

control signal

control signal

pn+2

pn+1

ln(pn+1),
ln(1.0-pn+1)

mux

k == 0?

Y

N

PL[k]

PE x-1

PE x

control signal

control signal

... ...

Fig. 2: Design of a Column Unit (CU).

2) The controller initiates a loop over the elements of the
column (corresponding to the outer loop in Algorithm 1
on line 4) after prefetching the first two error probabil-
ities (p1 and p2) and computing the initial logarithms
(ln(p1) and ln(1− p1)):

a) The error probability, pn+2, is prefetched.
b) The logarithms of pn+1 and 1−pn+1 are computed.
c) The previously computed logarithms on pn (ln pn

and ln 1 pn in the algorithm) are used for this
iteration.

d) The main processing elements (PE) will compute
PLn(X = k) for all k < K (lines 12–14 in
Algorithm 1). Multiple PEs operate on different
data in both a parallel and pipelined manner. Each
PE can initiate a new computation each cycle.

3) The column unit returns the results to the software.
This process is continually repeated until all of the columns

have been processed.
As previously mentioned, the column data is large, so it

cannot be stored on the FPGA chip. The error probabilities are
stored in DRAM on the FPGA board and must be prefetched
in order to keep up with the computation. By storing all of
the column data in DRAM, the design is decoupled from the
values of N for each column and is not memory resource
limited. The column unit is able to process columns with any
value of N (as long as the data fits in DRAM). The value of
K (which is obviously much smaller than N) does dictate the
amount of on-chip memory that is needed, as will be discussed
in Section IV-B.

The most expensive operations within the computation are
the logarithms and the exponentials. A dedicated logarithm
unit is used to compute the logarithms of pn+1 and 1− pn+1

during iteration n. In order for the error probability to be
available for these logarithm calculations, the prefetcher loads
pn+2 during iteration n. This forms a three-stage pipeline at
the macro level of the column unit in which the first stage
fetches pn, the second stage computes the logarithms of pn and
1− pn, and the third stage performs the column’s probability
calculations to compute the resulting partial PMF and p-value.

TABLE II. The latency and resource use of arithmetic units.

Floating Point Operators Latency FF use LUT use DSP use

add / sub 5 542 638 0
exp 20 1243 2088 15
log 20 3386 2120 19

B. Processing Elements

The core computation of each CU is the computation of
PLn(X=k). Multiple processing elements (PEs) within the
CU compute PLn(X=k) for different values of k in parallel.
Furthermore, each PE is pipelined, allowing it to initiate a new
computation every cycle.

The column unit does not have dedicated hardware to
compute SLn. Instead, the PEs are used for that purpose. Once
the PEs have computed all K − 1 values of PLn in step 2d
a final computation is issued to a PE to compute SLn. Note
the similarities between equations (3) and (5). SLn is actually
stored in the PLn array in the Kth location. This allows the
initial mux to select whether to pass through just PL prev[k]
(which is SLn−1 when k = K) or PL prev[k] + ln(1− pn)
(which is PLn−1(X=k)+ ln(1−pn) when k < K). A simple
adder (not shown) handles the computation of SLK during the
Kth iteration of the outer loop.

The primary computation of the PE is the log_sum_exp
calculation of equation 4. Logarithms and exponentials on
double precision floating point numbers are expensive both in
terms of resources and latency. Therefore, the PEs dictate the
overall performance of the accelerator. This requires careful
tuning of the floating point operation units. It is critical
to reduce the latency of the floating point operators while
not negatively affecting timing. Also, because the floating
point operators consume a non-trivial amount of LUTs and
DSPs, the use of resources needs to be tuned as well. Over-
utilizing either the LUTs or the DSPs will not only under-
utilize the other, but also limit the number of PEs and CUs
that can eventually be implemented. We use the floating-point
operation implementations in Xilinx LogiCORE IPs (v7.1) [3].
The latency and resource use of floating-point operators are
carefully tuned for each operation in log_sum_exp to opti-
mize overall performance and efficiency, as shown in Table II.

The on-chip memory is partitioned based on the number
of PEs so that all PEs can access data without competing for
memory ports. Note that the amount of on chip storage that is
required is 2K, as at any given time, the PEs are reading
PLn−1 and writing PLn. Even when K is 65536, which
is unusually large, the memory required is only 1 MB. This
memory is divided into two buffers. During each iteration of
the outer loop, the PEs will read from one buffer and write to
the other. For the next iteration, the input and output buffers
are swapped.

C. Design Trade-offs

There is a trade-off between exploiting intra-column and
inter-column parallelization to maximize performance across a
variety of datasets. More column units can exploit higher levels
of inter-column parallelism, whereas more PEs per column

unit can exploit higher levels of intra-column parallelism. The
more PEs per column unit, the fewer column units will fit in
the finite resources of an FPGA.

The amount of intra-column parallelism is limited by K
for each column. Therefore, there are diminishing returns to
increasing the number of PEs in a column unit. However, the
overhead of the column unit beyond the PEs makes it such
that there is a benefit to exploiting intra-column parallelism
to some degree. Therefore, it is critical to perform a design
space analysis to determine the best design point.

V. HOST SYSTEM DESIGN AND IMPLEMENTATION

LoFreq is written in standard C as a single-threaded pro-
gram. In order for LoFreq to utilize our Xilinx Alveo U250-
based accelerator, we had to change the LoFreq source code
that runs on the host.

Under the Xilinx Vitis Environment, the accelerator is
presented to the host system as an OpenCL device. So, our
changes to the LoFreq source code were to (1) use the OpenCL
API to initialize this device so that our accelerator for the
core probability computation on a column could be invoked
as an OpenCL kernel and (2) replace calls to the function that
performs the core probability computation on a column on
the host processor with invocations of that OpenCL kernel.
Since the ordinary function calls replaced are synchronous,
i.e., they do not return until the function has completed, we
invoke the OpenCL kernel synchronously. In other words, after
enqueueing commands to the OpenCL runtime that transfer the
inputs to the U250’s DRAM, execute the kernel, and transfer
the results back to the host, the host waits for the results to
be returned before starting any work on the next column.

Once the core probability computation is accelerated by the
U250, the parts of the computation that remain on the host
processor, such as preprocessing, will become a performance
bottleneck if they are executed sequentially. To parallelize
all parts of LoFreq’s execution, its developers used multiple
processes. However, rather than modifying the LoFreq source
code to implement multiprocess execution, they created a
Python script that divides the dataset into chunks, runs the
unmodified (single-threaded) LoFreq program on each chunk
in parallel, and merges the results from each of the processes
at the end. We directly use that Python script for multipro-
cessing in our system: each process works on one chunk and
all processes run concurrently. This works fine because the
Xilinx OpenCL runtime system allows multiple processes to
concurrently execute multiple kernels on the FPGA device.
Specifically, the OpenCL command queue allows the columns
submitted by different processes to be processed in parallel
on different column units. The OpenCL runtime automatically
distributes the execution of the columns over the CUs as the
CUs become available.

As discussed in Section III-B, the time that it takes to
process different columns varies widely, depending on the
values of N and K for a given column. Dividing the dataset
into chunks, i.e., groups of consecutive columns, achieves

a good balance between two competing factors: (1) mini-
mizing operating system overheads, such as process creation
and continual context switching between processes, and (2)
minimizing workload imbalance between the processes. We
find that dividing the datasets into many more chunks than
the number of processor cores or hardware thread contexts
yields the best performance results. However, at the operating
system level, we observe a subtle difference between the
multiprocess LoFreq and our accelerated implementation that
affects the trade-off between these competing factors. Pro-
cesses in our accelerated implementation are rarely preempted
by the operating system because their scheduling quantum
has expired, instead they are voluntarily relinquishing the
processor when they wait for the completion of an OpenCL
kernel on a column. Consequently, the number of context
switches is primarily a function of the number of columns,
and unrelated to the number of chunks, so increasing the
number of chunks, and thus the number of processes, to
achieve better load balance does not significantly increase the
context switching overhead. Moreover, the OpenCL command
queue decouples these processes from the hardware column
units, allowing each process to enqueue columns that will be
serviced as column units become available, making it practical
to use more processes than there are hardware column units.

VI. EVALUATION

A. Experimental Setup

System Configuration. The system used for evaluating
our accelerator design consists of an AMD Ryzen 7 5800X
processor (with 8 cores and 16 hardware thread contexts),
128 GB of DDR4 3200 memory, a 1 TB Samsung 980 PRO
SSD, and a Xilinx Alveo U250 card (Platform name: xil-
inx u250 gen3x16 xdma 3 1) [9]. The system was running
Ubuntu 18.04.4 LTS with Linux kernel 5.4.0 for compatibility
with the Xilinx kernel module.

The host program was developed in OpenCL 1.2 with Xilinx
XRT extensions, and the FPGA design was written as an
OpenCL kernel in C. The high-level synthesis and hardware
implementation were done using Xilinx Vitis 2020.02, which
under the hood uses Xilinx Vivado 2020.02 for logic opti-
mization, placement, and routing. All of the evaluated FPGA
designs were implemented to run at 300 MHz. Aggressive
optimization strategies were applied in the implementation:
the ExtraTimingOpt strategy is used for placement and the
AggressiveExplore strategy is used for routing [8]. Further-
more, physical optimizations were enabled. Individual column
units were implemented within one Super Logic Region [10]
in order to minimize boundary crossings.

Datasets. Table III describes the real-world datasets used
throughout this evaluation. These datasets come from the
NCBI SARS-CoV-2 data repository [5] and recent clinical
studies [14], [17].

Baseline. The stock multi-process implementation of
LoFreq [7] is used as the baseline in our performance evalu-
ation. It is configured to divide the dataset into 112 chunks,

Fig. 3: Probability Calculation Speedup for single column units
over a single CPU core.

which effectively utilizes the 8 cores and 16 hardware thread
contexts provided by the AMD Ryzen 7 5800X processor.

B. Probability Calculation Speedup Results

This section presents speedup results for just the probability
calculation on a column, which is the core computation that
is accelerated by the FPGA. The computational cost of this
workload is dictated by the column’s values for N and K.
N determines the number of outer loop (starting at line 4 in
Algorithm 1) iterations and K determines the number of inner
loop (starting at line 12 in Algorithm 1) iterations.

We measure the speedup of one single column unit over
one single CPU core, on processing columns from the datasets
shown in Table III. One individual column unit from each of
the four designs shown in Table IV is evaluated. Each column
unit is implemented with a different number of PEs, so they
vary in their resource utilization. All four column unit designs
run at 300 MHz.

Figure 3 shows the speedup results. Each mark in the figure
represents one column. The Y axis value is the speedup on
the core probability calculation when processing that column.
The X axis value of a mark is the column’s K value. Only
K is shown, while N is not, since K largely determines
the speedup. This is because K determines the number of
iterations of the inner loop, and most of the speedup comes
from the array of PEs parallelizing the computation.

To clearly show the speedup on columns with the most
common values of K, only the results for columns whose
K ranges from 1 to 1500 are shown. In reality, the speedup
is even larger on columns whose K is larger than 1500. The
highest observed speedup is 121.7× when K is 55208, using
one column unit with 32 PEs.

On dataset SRR12380204, using one column unit with 32
PEs, the time spent on the core probability calculation is re-
duced from 40.01 hours to 1.32 hours. And, the total execution
time for the entire application is reduced to 2.96 hours, which
is a 14.07× speedup compared to a sequential (single-process)
execution of the baseline. Note that with this column unit the
core probability calculation no longer constitutes the majority
of the application’s execution time, showing why the rest of
the application must still be parallelized on the host processor,
as discussed in Section V.

C. Complete Designs
While a single column unit with 32 PEs already delivers

significant speedup on the core probability calculation, such
a CU is not necessarily the optimal design. Furthermore,
the FPGA has enough resources for multiple such CUs. As
discussed in Section IV-C, a key tradeoff in the FPGA design
space is between exploiting inter-column and intra-column
parallelism. In the FPGA design, that question is transformed
into what is the right number of PEs per column unit and
the total number of column units in order to maximize the
performance gain.

Table IV shows four representative designs, each exploiting
both inter-column and intra-column parallelism at a different
level. Each design has a different number of PEs in the
column unit, and the maximum number of column units are
implemented. In other words, there are insufficient resources
on the FPGA to fit another CU in each design. Only CUs with
a power-of-2 number of PEs are considered. The overhead
of controlling the use of the PEs is prohibitive for other
designs, so using a power-of-2 leads to the most efficient use
of resources within a CU.

To unleash the full performance of each FPGA design,
we evaluate these designs using the multi-process LoFreq
described in Section V. A fixed number of chunks is chosen
for each design: 72 (designs 1 and 2), 112 (design 3), 160
(design 4). It is unsurprising that more chunks are needed as
the number of CUs increases, as it is important to keep all
CUs busy throughout the entirety of the computation. As the
columns within a chunk are processed sequentially, having
more chunks makes it more likely that the simple chunk-
based load balancing will be successful through the end of
the computation.

Figure 4 shows the speedup of the four FPGA designs
(described in Table IV) over the multi-process CPU baseline
(described in VI-A). As the figure shows, designs 3 and
4 consistently outperform the other designs and speed up
the entire application by over 20× for most computationally
intense datasets. Furthermore, on dataset SRR12380204, for
example, the execution time is reduced from 2.96 hours with
a single column unit (with 32 PEs) to 0.22 hours with the 14
column units (each with 8 PEs) in design 3.

Designs 3 and 4 achieve the best performance because they
both strike a balance between intra-column and inter-column
parallelism. On the one hand, the results from Figure 3 show
that it is beneficial to have a larger number of column units;
as the number of PEs doubles in a column unit, the speedup
increases by less than 2×. On the other hand, column units
in both designs still deliver over 10× speedup for columns
whose K is larger than 600.

For all datasets, we have verified that the end-to-end results
from our CPU-FPGA system are identical to those produced
by the original LoFreq, including the SNVs called and the
quality scores that are associated with those SNVs.

The resource utilization of the different designs is shown in
Table IV. The individual CU usage shows the percentage of
resources used just for a column unit with the given number

TABLE III. Dataset Characteristics

Dataset Abbreviation
N (Depth) K (Number of Varying Bases) Exec Time (hours)

of 16-process CPUMean Std. Dev. Mean Std. Dev. Median 75% Percentile Max

SRR11177792 [5] SRR111 93959 34896 277 230 221 365 8156 0.47
SRR12380204 [5] SRR123 430569 271733 606 844 433 756 55208 5.26
COVHA-20200314-P8-F03-P [14] P8-F03 320880 112528 655 486 567 816 31547 3.40
COVHA-20200316-P11-F06-P [14] P11-F06 227197 99526 754 442 668 931 14865 3.05
COVHA-20200316-P12-F07-P [14] P12-F07 238276 62935 724 383 658 894 8542 2.75
COVHA-20200403-P1-B03-P [14] P1-B03 461297 141367 961 647 824 1193 24646 7.05
H2HTFDSXY-2-IDUDI0034 S20 L002 [17] S20 L002 943993 112699 1106 1098 884 1284 43420 14.53

TABLE IV. The hardware configurations and total resource usage for different FPGA designs.

Hardware Configuration Individual CU Resource Use Total Resource Use

Num. of
CUs

Num. of
PEs per CU

Frequency
(MHz) CLB FF LUT DSP CLB FF LUT DSP

Design 1 3 32 300 22.14% 10.81% 20.13% 13.7% 78.15% 33.25% 66.48% 39.53%
Design 2 7 16 300 11.35% 5.52% 10.45% 6.19% 89.03% 40.44% 79.90% 43.45%
Design 3 14 8 300 6.27% 2.97% 5.61% 3.63% 91.13% 44.88% 84.57% 50.86%
Design 4 24 4 300 3.81% 1.76% 3.23% 2.35% 91.87% 49.11% 84.32% 56.49%

Datasets

S
pe

ed
up

 (X
)

0

10

20

30

40

SRR111 SRR123 P8-F03 P11-F06 P12-F07 P1-B03 S20_L002

Design 1 Design 2 Design 3 Design 4

Fig. 4: End-to-end speedup over 16-process CPU baseline.

of PEs. The total resource usage is the percentage of total
resources used, including those used to implement the memory
and PCIe subsystems. The resources used to implement the
FPGA shell and base regions are not considered. The absolute
amount of each type of resource can be found in [2].

VII. RELATED WORK

A wide range of FPGA based accelerators have been
developed for important bioinformatics applications, such as
Read Mapping [11], [15], [16], [19], [25], [29], Alignment
Refinement [32], and Variant Calling [1], [12], [20], [23], [28].

For Variant Calling, most of the existing work focuses on the
GATK HaplotypeCaller [24], [26] and its application to human
genome data [1], [12], [20], [28], [30]. Unlike LoFreq, which
is alignment-based, GATK is a local assembly-based variant
caller. The GATK HaplotypeCaller is specifically designed to
perform variant calling on low-depth human genome data,
while LoFreq specializes in calling low frequency variants on
genome data with high depth.

The state-of-the-art implementation of LoFreq is the stock
multi-process implementation [7]. Kille et al. [21] proposed
a Poisson-Binomial approximation technique to LoFreq. This
technique computes an approximation with light-weight com-
putation instead of computing the exact pvalue to filter out
columns. This technique is orthogonal to our contributions to
accelerate the exact computation.

Nvidia Clara Parabricks is a software suite of common
Whole-Genome Sequencing analysis tools that are optimized
for running on high-end Nvidia GPUs [6]. Recently, LoFreq
was incorporated as part of the pipeline, but it is limited to
variant calling on somatic human genome data only. Somatic
human genome data has different characteristics from viral
data. There are up to 5 orders of magnitude more columns,
but each column is up to 4 orders of magnitude smaller. This
makes it such that there is limited intra-column parallelism, so
Parabricks focuses on mapping the inter-column parallelism
to the GPU. Parabricks is able to achieve a 6× speedup over
LoFreq on such data using 4 Nvidia V100 GPUs [4].

VIII. CONCLUSION

This paper has presented the design of an FPGA-based
accelerator for the LoFreq variant caller that can achieve up
to 32.4× speedup on the end-to-end execution of LoFreq on
real SARS-CoV-2 datasets. This speedup is achieved over the
state-of-the-art parallelized software version of LoFreq that
efficiently utilizes 16 hardware threads. This paper has also
presented a design space analysis of the accelerator that shows
that a single column unit can speed up the core computation
by up to 120×, but that there is a trade-off between inter-
and intra-column parallelism. This accelerator has important
applications to real world genomic analysis as LoFreq excels
at identifying low frequency variants and is widely used, but
suffers from long execution times.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive feedback. We thank Dr. Todd Treangen, Bryce
Kille, Yunxi Liu for their consistent help. This work is partially
supported by the NSF under grant NSF-CNS2008857 and the
Ken Kennedy Institute Computational Science & Engineering
Recruiting Fellowship (funded by the Rice Oil & Gas HPC
Conference).

REFERENCES

[1] “Accelerating genomics research with opencl and fpgas,”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp-accelerating-genomics-opencl-fpgas.pdf, accessed Jan
14, 2022.

[2] “Alveo card user guide,” https://www.xilinx.com/content/dam/xilinx/
support/documentation/boards and kits/accelerator-cards/ug1120-
alveo-platforms.pdf, accessed Jan 15, 2022.

[3] “Floating-point operator v7.1 - logicore ip product guide,” https://
docs.xilinx.com/v/u/en-US/pg060-floating-point, accessed Apr 8, 2022.

[4] “Gpu-accelerated tools added to nvidia clara parabricks v3.6 for
cancer and germline analyses,” https://developer.nvidia.com/blog/gpu-
accelerated-tools-added-to-nvidia-clara-parabricks-v3-6-for-cancer-
and-germline-analyses/, accessed Apr 7, 2022.

[5] “Ncbi sars-cov-2 resources,” https://www.ncbi.nlm.nih.gov/sars-cov-2/,
accessed Jan 15, 2022.

[6] “Nvidia clara parabricks documentation,” https://docs.nvidia.com/clara/
parabricks/3.7.0/index.html, accessed Jan 14, 2022.

[7] “Source code repository of lofreq,” https://github.com/CSB5/lofreq, ac-
cessed Jan 14, 2022.

[8] “Vivado design suite user guide - implementation,” https:
//www.xilinx.com/support/documentation/sw manuals/xilinx2021
1/ug904-vivado-implementation.pdf, accessed Jan 16, 2022.

[9] “Xilinx alveo u250 accelerator card,” https://www.xilinx.com/products/
boards-and-kits/alveo/u250.html, accessed Jan 15, 2022.

[10] “Xilinx large fpga methodology guide,” https://www.xilinx.com/
support/documents/sw manuals/xilinx2012 3/ug872 largefpga.pdf, ac-
cessed Apr 7, 2022.

[11] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging fpgas for
accelerating short read alignment,” IEEE/ACM Trans. Comput. Biol.
Bioinformatics, vol. 14, no. 3, p. 668–677, may 2017. [Online].
Available: https://doi.org/10.1109/TCBB.2016.2535385

[12] S. S. Banerjee, M. el Hadedy, C. Y. Tan, Z. T. Kalbarczyk, S. Lumetta,
and R. K. Iyer, “On accelerating pair-hmm computations in pro-
grammable hardware,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 2017, pp. 1–8.

[13] P. Blanchard, D. J. Higham, and N. J. Higham, “Accurately computing
the log-sum-exp and softmax functions,” IMA Journal of Numerical
Analysis, vol. 41, no. 4, pp. 2311–2330, 08 2020. [Online]. Available:
https://doi.org/10.1093/imanum/draa038

[14] D. Butler, C. Mozsary, C. Meydan, J. Foox, J. Rosiene, A. Shaiber,
D. Danko, E. Afshinnekoo, M. MacKay, F. J. Sedlazeck, N. A.
Ivanov, M. Sierra, D. Pohle, M. Zietz, U. Gisladottir, V. Ramlall,
E. T. Sholle, E. J. Schenck, C. D. Westover, C. Hassan, K. Ryon,
B. Young, C. Bhattacharya, D. L. Ng, A. C. Granados, Y. A. Santos,
V. Servellita, S. Federman, P. Ruggiero, A. Fungtammasan, C.-S.
Chin, N. M. Pearson, B. W. Langhorst, N. A. Tanner, Y. Kim,
J. W. Reeves, T. D. Hether, S. E. Warren, M. Bailey, J. Gawrys,
D. Meleshko, D. Xu, M. Couto-Rodriguez, D. Nagy-Szakal, J. Barrows,
H. Wells, N. B. O’Hara, J. A. Rosenfeld, Y. Chen, P. A. D. Steel,
A. J. Shemesh, J. Xiang, J. Thierry-Mieg, D. Thierry-Mieg, A. Iftner,
D. Bezdan, E. Sanchez, T. R. Campion, J. Sipley, L. Cong, A. Craney,
P. Velu, A. M. Melnick, S. Shapira, I. Hajirasouliha, A. Borczuk,
T. Iftner, M. Salvatore, M. Loda, L. F. Westblade, M. Cushing,
S. Wu, S. Levy, C. Chiu, R. E. Schwartz, N. Tatonetti, H. Rennert,
M. Imielinski, and C. E. Mason, “Shotgun transcriptome, spatial
omics, and isothermal profiling of sars-cov-2 infection reveals unique
host responses, viral diversification, and drug interactions,” Nature
Communications, vol. 12, no. 1, p. 1660, Mar 2021. [Online]. Available:
https://doi.org/10.1038/s41467-021-21361-7

[15] M.-C. F. Chang, Y.-T. Chen, J. Cong, P.-T. Huang, C.-L. Kuo, and
C. H. Yu, “The smem seeding acceleration for dna sequence align-
ment,” in 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2016, pp. 32–39.

[16] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines, 2015, pp. 199–202.

[17] H. Doddapaneni, S. J. Cregeen, R. Sucgang, Q. Meng, X. Qin,
V. Avadhanula, H. Chao, V. Menon, E. Nicholson, D. Henke,
F.-A. Piedra, A. Rajan, Z. Momin, K. Kottapalli, K. L. Hoffman,
F. J. Sedlazeck, G. Metcalf, P. A. Piedra, D. M. Muzny, J. F.
Petrosino, and R. A. Gibbs, “Oligonucleotide capture sequencing

of the sars-cov-2 genome and subgenomic fragments from covid-
19 individuals,” bioRxiv : the preprint server for biology, p.
2020.07.27.223495, Jul 2020, 32766579[pmid]. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32766579

[18] N. D. Grubaugh, K. Gangavarapu, J. Quick, N. L. Matteson, J. G.
De Jesus, B. J. Main, A. L. Tan, L. M. Paul, D. E. Brackney,
S. Grewal, N. Gurfield, K. K. A. Van Rompay, S. Isern, S. F. Michael,
L. L. Coffey, N. J. Loman, and K. G. Andersen, “An amplicon-based
sequencing framework for accurately measuring intrahost virus diversity
using primalseq and ivar,” Genome Biology, vol. 20, no. 1, 01 2019.
[Online]. Available: https://doi.org/10.1186/s13059-018-1618-7

[19] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2019, pp.
127–135.

[20] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W.-m. W.
Hwu, and D. Chen, “Hardware acceleration of the pair-hmm algorithm
for dna variant calling,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2017,
pp. 275–284.

[21] B. Kille, Y. Liu, N. Sapoval, M. Nute, L. Rauchwerger, N. Amato,
and T. J. Treangen, “Accelerating SARS-CoV-2 low frequency variant
calling on ultra deep sequencing datasets,” ArXiv, May 2021.

[22] Y. Liu, J. Kearney, M. Mahmoud, B. Kille, F. J. Sedlazeck, and T. J.
Treangen, “Rescuing low frequency variants within intra-host viral
populations directly from oxford nanopore sequencing data,” bioRxiv,
2021. [Online]. Available: https://www.biorxiv.org/content/early/2021/
09/06/2021.09.03.458038

[23] M. Lo, Z. Fang, J. Wang, P. Zhou, M.-C. F. Chang, and J. Cong,
“Algorithm-hardware co-design for bqsr acceleration in genome analysis
toolkit,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2020, pp. 157–
166.

[24] A. McKenna, M. Hanna, E. Banks, A. Y. Sivachenko, K. Cibulskis,
A. Kernytsky, K. V. Garimella, D. D. Altshuler, S. Gabriel, M. J.
Daly, and M. A. DePristo, “The genome analysis toolkit: a mapreduce
framework for analyzing next-generation dna sequencing data.” Genome
research, vol. 20 9, pp. 1297–303, 2010.

[25] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, “Hardware acceleration of short read mapping,” in 2012
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, 2012, pp. 161–168.

[26] R. Poplin, V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O.
Carneiro, G. A. Van der Auwera, D. E. Kling, L. D. Gauthier,
A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault, S. Chandran,
C. Whelan, M. Lek, S. Gabriel, M. J. Daly, B. Neale, D. G.
MacArthur, and E. Banks, “Scaling accurate genetic variant discovery
to tens of thousands of samples,” bioRxiv, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/07/24/201178

[27] J. J. Salk, M. W. Schmitt, and L. A. Loeb, “Enhancing the accuracy of
next-generation sequencing for detecting rare and subclonal mutations,”
Nature Reviews Genetics, vol. 19, no. 5, pp. 269–285, May 2018.
[Online]. Available: https://doi.org/10.1038/nrg.2017.117

[28] D. Sampietro, C. Crippa, L. Di Tucci, E. Del Sozzo, and M. D.
Santambrogio, “Fpga-based pairhmm forward algorithm for dna variant
calling,” in 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2018, pp. 1–8.

[29] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics
co-processor provides up to 15,000x acceleration on long read
assembly,” SIGPLAN Not., vol. 53, no. 2, p. 199–213, mar 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3173193

[30] P. Wang, Y. Lei, and Y. Dou, “Comparative analysis of fpga-based pair-
hmm accelerator structures,” Electronics, vol. 8, no. 9, p. 965, 2019.

[31] A. Wilm, P. P. K. Aw, D. Bertrand, G. H. T. Yeo, S. H. Ong, C. H. Wong,
C. C. Khor, R. Petric, M. L. Hibberd, and N. Nagarajan, “Lofreq: a
sequence-quality aware, ultra-sensitive variant caller for uncovering cell-
population heterogeneity from high-throughput sequencing datasets,”
Nucleic acids research, vol. 40, no. 22, pp. 11 189–11 201, 2012.

[32] L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanović, D. A. Patterson, and A. D.
Joseph, “Fpga accelerated indel realignment in the cloud,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 277–290.

